File: conftest.py

package info (click to toggle)
python-polsarpro 2026.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 17,024 kB
  • sloc: python: 3,830; xml: 293; sh: 91; javascript: 18; makefile: 3
file content (136 lines) | stat: -rw-r--r-- 5,554 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import pytest
import numpy as np
import xarray as xr
from polsarpro.util import vec_to_mat


@pytest.fixture(scope="function")
def synthetic_poldata(request):
    """Generate only the requested synthetic polarimetric datasets.

    Args:
        request.param: one or more of {"S", "C3", "T3"}.
                       If None, all are generated.

    Returns:
        - xr.Dataset if one type requested (e.g., "T3")
        - dict[str, xr.Dataset] if multiple types requested
    """
    N = 128
    D = 3
    dims = ("y", "x")

    # Parse requested types
    requested = getattr(request, "param", None)
    if requested is None:
        requested = ["S", "C3", "T3"]
    elif isinstance(requested, str):
        requested = [requested]

    result = {}

    # Generate only what's needed
    if "S" in requested:
        S = (np.random.randn(N, N, 2, 2) + 1j * np.random.randn(N, N, 2, 2)).astype(
            "complex64"
        )
        S_dict = dict(
            hh=xr.DataArray(S[..., 0, 0], dims=dims),
            hv=xr.DataArray(S[..., 0, 1], dims=dims),
            vh=xr.DataArray(S[..., 1, 0], dims=dims),
            vv=xr.DataArray(S[..., 1, 1], dims=dims),
        )
        result["S"] = xr.Dataset(
            S_dict,
            attrs=dict(poltype="S"),
            coords={"y": np.arange(N), "x": np.arange(N)},
        )

    if any(t in requested for t in ("C3", "T3")):
        # Only generate v/vp when needed
        v = np.random.randn(N, N, D) + 1j * np.random.randn(N, N, D)
        vp = np.random.randn(N, N, D) + 1j * np.random.randn(N, N, D)
        if "C2" in requested:
            C2 = vec_to_mat(v[..., :2]).astype("complex64")
            C2_dict = dict(
                m11=xr.DataArray(C2[..., 0, 0].real, dims=dims),
                m22=xr.DataArray(C2[..., 1, 1].real, dims=dims),
                m12=xr.DataArray(C2[..., 0, 1], dims=dims),
            )
            result["C2"] = xr.Dataset(
                C2_dict,
                attrs=dict(poltype="C2", description="..."),
                coords={"y": np.arange(N), "x": np.arange(N)},
            )
        if "C3" in requested:
            C3 = vec_to_mat(v).astype("complex64")
            C3_dict = dict(
                m11=xr.DataArray(C3[..., 0, 0].real, dims=dims),
                m22=xr.DataArray(C3[..., 1, 1].real, dims=dims),
                m33=xr.DataArray(C3[..., 2, 2].real, dims=dims),
                m12=xr.DataArray(C3[..., 0, 1], dims=dims),
                m13=xr.DataArray(C3[..., 0, 2], dims=dims),
                m23=xr.DataArray(C3[..., 1, 2], dims=dims),
            )
            result["C3"] = xr.Dataset(
                C3_dict,
                attrs=dict(poltype="C3", description="..."),
                coords={"y": np.arange(N), "x": np.arange(N)},
            )
        if "C4" in requested:
            v = np.random.randn(N, N, 4) + 1j * np.random.randn(N, N, 4)
            C4 = vec_to_mat(v).astype("complex64")
            C4_dict = dict(
                m11=xr.DataArray(C4[..., 0, 0].real, dims=dims),
                m22=xr.DataArray(C4[..., 1, 1].real, dims=dims),
                m33=xr.DataArray(C4[..., 2, 2].real, dims=dims),
                m44=xr.DataArray(C4[..., 3, 3].real, dims=dims),
                m12=xr.DataArray(C4[..., 0, 1], dims=dims),
                m13=xr.DataArray(C4[..., 0, 2], dims=dims),
                m14=xr.DataArray(C4[..., 0, 3], dims=dims),
                m23=xr.DataArray(C4[..., 1, 2], dims=dims),
                m24=xr.DataArray(C4[..., 1, 3], dims=dims),
                m34=xr.DataArray(C4[..., 2, 3], dims=dims),
            )
            result["C4"] = xr.Dataset(
                C4_dict,
                attrs=dict(poltype="C4", description="..."),
                coords={"y": np.arange(N), "x": np.arange(N)},
            )
        if "T3" in requested:
            T3 = vec_to_mat(vp).astype("complex64")
            T3_dict = dict(
                m11=xr.DataArray(T3[..., 0, 0].real, dims=dims),
                m22=xr.DataArray(T3[..., 1, 1].real, dims=dims),
                m33=xr.DataArray(T3[..., 2, 2].real, dims=dims),
                m12=xr.DataArray(T3[..., 0, 1], dims=dims),
                m13=xr.DataArray(T3[..., 0, 2], dims=dims),
                m23=xr.DataArray(T3[..., 1, 2], dims=dims),
            )
            result["T3"] = xr.Dataset(
                T3_dict,
                attrs=dict(poltype="T3", description="..."),
                coords={"y": np.arange(N), "x": np.arange(N)},
            )
        if "T4" in requested:
            v = np.random.randn(N, N, 4) + 1j * np.random.randn(N, N, 4)
            T4 = vec_to_mat(v).astype("complex64")
            T4_dict = dict(
                m11=xr.DataArray(T4[..., 0, 0].real, dims=dims),
                m22=xr.DataArray(T4[..., 1, 1].real, dims=dims),
                m33=xr.DataArray(T4[..., 2, 2].real, dims=dims),
                m44=xr.DataArray(T4[..., 3, 3].real, dims=dims),
                m12=xr.DataArray(T4[..., 0, 1], dims=dims),
                m13=xr.DataArray(T4[..., 0, 2], dims=dims),
                m14=xr.DataArray(T4[..., 0, 3], dims=dims),
                m23=xr.DataArray(T4[..., 1, 2], dims=dims),
                m24=xr.DataArray(T4[..., 1, 3], dims=dims),
                m34=xr.DataArray(T4[..., 2, 3], dims=dims),
            )
            result["T4"] = xr.Dataset(
                T4_dict,
                attrs=dict(poltype="T4", description="..."),
                coords={"y": np.arange(N), "x": np.arange(N)},
            )

    return result