File: test_decompositions.py

package info (click to toggle)
python-polsarpro 2026.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 17,024 kB
  • sloc: python: 3,830; xml: 293; sh: 91; javascript: 18; makefile: 3
file content (155 lines) | stat: -rw-r--r-- 5,171 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import pytest
from polsarpro.decompositions import (
    h_a_alpha,
    freeman,
    yamaguchi3,
    yamaguchi4,
    tsvm,
    vanzyl,
    cameron,
)


@pytest.mark.parametrize(
    "synthetic_poldata", ["S", "C2", "C3", "C4", "T3", "T4"], indirect=True
)
def test_h_a_alpha(synthetic_poldata):
    input_data = synthetic_poldata

    for _, ds in input_data.items():
        res = h_a_alpha(
            input_data=ds,
            boxcar_size=[5, 5],
            flags=("alpha", "entropy", "anisotropy", "betas"),
        )
        var = "hh" if "hh" in ds.data_vars else "m11"
        shp = ds[var].shape
        assert all((res[it].shape == shp for it in ["entropy", "alpha", "anisotropy"]))
        assert res.betas.shape == shp + (3,)
        assert all(
            (
                res[it].dtype == "float32"
                for it in ["entropy", "alpha", "anisotropy", "betas"]
            )
        )


@pytest.mark.parametrize("synthetic_poldata", ["S", "C3", "T3"], indirect=True)
@pytest.mark.filterwarnings("ignore:invalid")
def test_freeman(synthetic_poldata):

    input_data = synthetic_poldata

    for _, ds in input_data.items():
        # uses dask specific functions and cannot be run on numpy arrays
        ds = ds.chunk("auto")
        res = freeman(
            input_data=ds,
            boxcar_size=[5, 5],
        )
        var = "hh" if "hh" in ds.data_vars else "m11"
        shp = ds[var].shape
        assert all((res[it].shape == shp for it in ["odd", "double", "volume"]))
        assert all((res[it].dtype == "float32" for it in ["odd", "double", "volume"]))


@pytest.mark.parametrize("synthetic_poldata", ["S", "C3", "T3"], indirect=True)
@pytest.mark.filterwarnings("ignore:invalid")
def test_yamaguchi3(synthetic_poldata):

    input_data = synthetic_poldata

    for _, ds in input_data.items():
        # uses dask specific functions and cannot be run on numpy arrays
        ds = ds.chunk("auto")
        res = yamaguchi3(
            input_data=ds,
            boxcar_size=[5, 5],
        )
        var = "hh" if "hh" in ds.data_vars else "m11"
        shp = ds[var].shape
        assert all((res[it].shape == shp for it in ["odd", "double", "volume"]))
        assert all((res[it].dtype == "float32" for it in ["odd", "double", "volume"]))


@pytest.mark.parametrize("synthetic_poldata", ["S", "C3", "T3"], indirect=True)
@pytest.mark.filterwarnings("ignore:invalid")
def test_yamaguchi4(synthetic_poldata):

    input_data = synthetic_poldata

    for _, ds in input_data.items():
        for mode in ["y4o", "y4r", "s4r"]:
            # uses dask specific functions and cannot be run on numpy arrays
            ds = ds.chunk("auto")
            res = yamaguchi4(input_data=ds, boxcar_size=[5, 5], mode=mode)
            var = "hh" if "hh" in ds.data_vars else "m11"
            shp = ds[var].shape
            assert all(
                (res[it].shape == shp for it in ["odd", "double", "volume", "helix"])
            )
            assert all(
                (
                    res[it].dtype == "float32"
                    for it in ["odd", "double", "volume", "helix"]
                )
            )


@pytest.mark.parametrize("synthetic_poldata", ["S", "C3", "T3"], indirect=True)
def test_tsvm(synthetic_poldata):
    input_data = synthetic_poldata

    # input flags and corresponding output names
    in_out = {
        "alpha_phi_tau_psi": ("alpha_s", "phi_s", "tau_m", "psi"),
        "alpha": ("alpha_s1", "alpha_s2", "alpha_s3"),
        "phi": ("phi_s1", "phi_s2", "phi_s3"),
        "tau": ("tau_m1", "tau_m2", "tau_m3"),
        "psi": ("psi1", "psi2", "psi3"),
    }

    for _, ds in input_data.items():
        res = tsvm(
            input_data=ds,
            boxcar_size=[5, 5],
            flags=tuple(in_out.keys()),
        )
        var = "hh" if "hh" in ds.data_vars else "m11"
        shp = ds[var].shape
        for flag in in_out:
            for name in in_out[flag]:
                assert res[name].dtype == "float32"
                assert res[name].shape == shp


@pytest.mark.parametrize("synthetic_poldata", ["S", "C3", "T3"], indirect=True)
@pytest.mark.filterwarnings("ignore:invalid")
def test_vanzyl(synthetic_poldata):

    input_data = synthetic_poldata

    for _, ds in input_data.items():
        # uses dask specific functions and cannot be run on numpy arrays
        ds = ds.chunk("auto")
        res = vanzyl(
            input_data=ds,
            boxcar_size=[5, 5],
        )
        var = "hh" if "hh" in ds.data_vars else "m11"
        shp = ds[var].shape
        assert all((res[it].shape == shp for it in ["odd", "double", "volume"]))
        assert all((res[it].dtype == "float32" for it in ["odd", "double", "volume"]))


@pytest.mark.parametrize("synthetic_poldata", ["S"], indirect=True)
def test_cameron(synthetic_poldata):
    input_data = synthetic_poldata

    for _, ds in input_data.items():
        input_data = ds.chunk(x=64, y=64)
        res = cameron(input_data=input_data)
        var = "hh" if "hh" in ds.data_vars else "m11"
        shp = ds[var].shape
        assert res["cameron"].shape == shp
        assert res["cameron"].dtype == "int32"