File: test_io.py

package info (click to toggle)
python-polsarpro 2026.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 17,024 kB
  • sloc: python: 3,830; xml: 293; sh: 91; javascript: 18; makefile: 3
file content (167 lines) | stat: -rw-r--r-- 5,275 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import pytest
import numpy as np
import xarray as xr
from pathlib import Path

from polsarpro.io import open_netcdf_beam, polmat_to_netcdf


@pytest.fixture
def tmp_netcdf(tmp_path: Path):
    """Helper to write a temporary NetCDF file."""

    def _create_ds(variables: dict, geocoded=False):
        y = np.arange(2)
        x = np.arange(3)
        dims = ("lat", "lon") if geocoded else ("y", "x")
        coords = {"y": y, "x": x} if dims == ("y", "x") else {"lat": y, "lon": x}
        ds = xr.Dataset(
            {name: (dims, np.ones((len(y), len(x)))) for name in variables},
            coords=coords,
        )
        # add metadata attribute
        ds["metadata"] = xr.DataArray(
            attrs={"Abstracted_Metadata:is_terrain_corrected": int(geocoded)}
        )
        file_path = tmp_path / "test.nc"
        ds.to_netcdf(file_path)
        return file_path

    return _create_ds


def test_s_matrix(tmp_netcdf):
    # Create S matrix dataset
    S_vars = [
        f"{x}_{p1}{p2}" for p1 in ("H", "V") for p2 in ("H", "V") for x in ("i", "q")
    ]
    file_path = tmp_netcdf(S_vars, geocoded=False)

    ds_out = open_netcdf_beam(file_path)

    assert set(ds_out.data_vars) == {"hh", "hv", "vh", "vv"}
    assert ds_out.attrs["poltype"] == "S"
    assert "description" in ds_out.attrs
    assert "y" in ds_out.coords and "x" in ds_out.coords


def test_c3_matrix(tmp_netcdf):
    C3_vars = [
        "C11",
        "C22",
        "C33",
        "C12_real",
        "C12_imag",
        "C13_real",
        "C13_imag",
        "C23_real",
        "C23_imag",
    ]
    file_path = tmp_netcdf(C3_vars, geocoded=True)

    ds_out = open_netcdf_beam(file_path)

    assert set(ds_out.data_vars) == {"m11", "m22", "m33", "m12", "m13", "m23"}
    assert ds_out.attrs["poltype"] == "C3"
    assert "description" in ds_out.attrs
    # Should not add y/x for geocoded datasets
    assert "y" not in ds_out.coords


def test_t3_matrix(tmp_netcdf):
    T3_vars = [
        "T11",
        "T22",
        "T33",
        "T12_real",
        "T12_imag",
        "T13_real",
        "T13_imag",
        "T23_real",
        "T23_imag",
    ]
    file_path = tmp_netcdf(T3_vars, geocoded=True)

    ds_out = open_netcdf_beam(file_path)

    assert set(ds_out.data_vars) == {"m11", "m22", "m33", "m12", "m13", "m23"}
    assert ds_out.attrs["poltype"] == "T3"
    assert "description" in ds_out.attrs


def test_invalid_vars(tmp_netcdf):
    file_path = tmp_netcdf(["random_var"], geocoded=False)

    with pytest.raises(ValueError, match="Polarimetric type not recognized"):
        open_netcdf_beam(file_path)


@pytest.mark.parametrize("poltype", ["S", "C2", "T3"])
def test_polmat_to_netcdf(tmp_path, poltype):
    shape = (15, 10)
    coords = {"y": np.arange(shape[0]), "x": np.arange(shape[1])}

    if poltype == "S":
        ds = xr.Dataset(
            {
                "hh": (("y", "x"), np.ones(shape, dtype=np.complex64) * (1 + 2j)),
                "hv": (("y", "x"), np.ones(shape, dtype=np.complex64) * (3 + 4j)),
                "vh": (("y", "x"), np.ones(shape, dtype=np.complex64) * (3 + 4j)),
                "vv": (("y", "x"), np.ones(shape, dtype=np.complex64) * (5 + 6j)),
            },
            coords=coords,
            attrs={"poltype": "S", "description": "Test S matrix"},
        ).chunk(x=2, y=2)
    elif poltype == "C2":
        ds = xr.Dataset(
            {
                "m11": (("y", "x"), np.ones(shape, dtype=np.float32)),
                "m12": (("y", "x"), np.ones(shape, dtype=np.complex64) * (2 + 3j)),
                "m22": (("y", "x"), np.ones(shape, dtype=np.float32) * 4),
            },
            coords=coords,
            attrs={"poltype": "C2", "description": "Test C2 matrix"},
        ).chunk(x=2, y=2)
    else:  # T3
        ds = xr.Dataset(
            {
                "m11": (("y", "x"), np.ones(shape, dtype=np.float32)),
                "m12": (("y", "x"), np.ones(shape, dtype=np.complex64) * (2 + 2j)),
                "m13": (("y", "x"), np.ones(shape, dtype=np.complex64) * (3 + 3j)),
                "m22": (("y", "x"), np.ones(shape, dtype=np.float32) * 4),
                "m23": (("y", "x"), np.ones(shape, dtype=np.complex64) * (5 + 1j)),
                "m33": (("y", "x"), np.ones(shape, dtype=np.float32) * 6),
            },
            coords=coords,
            attrs={"poltype": "T3", "description": "Test T3 matrix"},
        ).chunk(x=2, y=2)

    out_file = tmp_path / f"test_{poltype}.nc"
    polmat_to_netcdf(ds, out_file)

    ds_out = xr.open_dataset(out_file)
    assert ds_out.attrs["poltype"] == poltype
    assert "description" in ds_out.attrs

    if poltype == "S":
        expected_vars = {"i_HH", "q_HH", "i_HV", "q_HV"}
    elif poltype == "C2":
        expected_vars = {"C11", "C12_real", "C12_imag", "C22"}
    else:  # T3
        expected_vars = {
            "T11",
            "T12_real",
            "T12_imag",
            "T13_real",
            "T13_imag",
            "T22",
            "T23_real",
            "T23_imag",
            "T33",
        }

    assert set(ds_out.data_vars.keys()) == expected_vars
    for var in expected_vars:
        assert ds_out[var].shape == shape
        assert not np.isnan(ds_out[var].values).any()
    ds_out.close()