File: test_util.py

package info (click to toggle)
python-polsarpro 2026.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 17,024 kB
  • sloc: python: 3,830; xml: 293; sh: 91; javascript: 18; makefile: 3
file content (323 lines) | stat: -rw-r--r-- 11,393 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import pytest
import numpy as np
import xarray as xr
from polsarpro.util import vec_to_mat
from polsarpro.util import S_to_C3, S_to_C4, S_to_C2
from polsarpro.util import S_to_T3, S_to_T4
from polsarpro.util import T3_to_C3, T4_to_C4
from polsarpro.util import C3_to_T3, C4_to_T4
from polsarpro.util import boxcar
from polsarpro.util import multilook
from polsarpro.util import pauli_rgb


def test_vec_to_mat():

    N = 128
    D = 3
    v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
    M = vec_to_mat(v)
    assert M.shape == (N, N, D, D)
    # M has to be Hermitian
    assert np.allclose(M.transpose((0, 1, 3, 2)), M.conj())
    assert np.allclose(M.diagonal(axis1=2, axis2=3).imag, 0)


def test_S_to_C2():

    N = 128
    S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
        "complex64"
    )

    dims = ("y", "x")
    S_dict = dict(
        hh=xr.DataArray(S[..., 0, 0], dims=dims),
        hv=xr.DataArray(S[..., 0, 1], dims=dims),
        vh=xr.DataArray(S[..., 1, 0], dims=dims),
        vv=xr.DataArray(S[..., 1, 1], dims=dims),
    )
    Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
    C2x = S_to_C2(Sx)

    # test ouput shapes and types
    assert C2x.poltype == "C2"
    assert all(C2x[var].shape == (N, N) for var in C2x.data_vars)
    assert all(C2x[var].dtype == "float32" for var in ["m11", "m22"])
    assert all(C2x[var].dtype == "complex64" for var in ["m12"])


def test_S_to_C3():

    N = 128
    S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
        "complex64"
    )

    dims = ("y", "x")
    S_dict = dict(
        hh=xr.DataArray(S[..., 0, 0], dims=dims),
        hv=xr.DataArray(S[..., 0, 1], dims=dims),
        vh=xr.DataArray(S[..., 1, 0], dims=dims),
        vv=xr.DataArray(S[..., 1, 1], dims=dims),
    )
    Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
    C3x = S_to_C3(Sx)

    # test ouput shapes and types
    assert C3x.poltype == "C3"
    assert all(C3x[var].shape == (N, N) for var in C3x.data_vars)
    assert all(C3x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
    assert all(C3x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])


def test_S_to_C4():

    N = 128
    S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
        "complex64"
    )

    dims = ("y", "x")
    S_dict = dict(
        hh=xr.DataArray(S[..., 0, 0], dims=dims),
        hv=xr.DataArray(S[..., 0, 1], dims=dims),
        vh=xr.DataArray(S[..., 1, 0], dims=dims),
        vv=xr.DataArray(S[..., 1, 1], dims=dims),
    )
    Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
    C4x = S_to_C4(Sx)

    # test ouput shapes and types
    assert C4x.poltype == "C4"
    assert all(C4x[var].shape == (N, N) for var in C4x.data_vars)
    assert all(C4x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
    assert all(C4x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])


def test_S_to_T3():

    N = 128
    S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
        "complex64"
    )

    dims = ("y", "x")
    S_dict = dict(
        hh=xr.DataArray(S[..., 0, 0], dims=dims),
        hv=xr.DataArray(S[..., 0, 1], dims=dims),
        vh=xr.DataArray(S[..., 1, 0], dims=dims),
        vv=xr.DataArray(S[..., 1, 1], dims=dims),
    )
    Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
    T3x = S_to_T3(Sx)

    # test ouput shapes and types
    assert T3x.poltype == "T3"
    assert all(T3x[var].shape == (N, N) for var in T3x.data_vars)
    assert all(T3x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
    assert all(T3x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])


def test_S_to_T4():

    N = 128
    S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
        "complex64"
    )
    # Xarray version
    dims = ("y", "x")
    S_dict = dict(
        hh=xr.DataArray(S[..., 0, 0], dims=dims),
        hv=xr.DataArray(S[..., 0, 1], dims=dims),
        vh=xr.DataArray(S[..., 1, 0], dims=dims),
        vv=xr.DataArray(S[..., 1, 1], dims=dims),
    )
    Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
    T4x = S_to_T4(Sx)

    # test ouput shapes and types
    assert T4x.poltype == "T4"
    assert all(T4x[var].shape == (N, N) for var in T4x.data_vars)
    assert all(T4x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
    assert all(T4x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])


def test_T3_to_C3():

    N = 128
    D = 3
    v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
    # fake T3 matrix
    T3 = vec_to_mat(v)

    dims = ("y", "x")
    T3_dict = dict(
        m11=xr.DataArray(T3[..., 0, 0].real.astype("float32"), dims=dims),
        m22=xr.DataArray(T3[..., 1, 1].real.astype("float32"), dims=dims),
        m33=xr.DataArray(T3[..., 2, 2].real.astype("float32"), dims=dims),
        m12=xr.DataArray(T3[..., 0, 1].astype("complex64"), dims=dims),
        m13=xr.DataArray(T3[..., 0, 2].astype("complex64"), dims=dims),
        m23=xr.DataArray(T3[..., 1, 2].astype("complex64"), dims=dims),
    )
    T3x = xr.Dataset(T3_dict, attrs=dict(poltype="T3"))
    C3x = T3_to_C3(T3x)
    # test ouput shapes and types
    assert C3x.poltype == "C3"
    assert all(C3x[var].shape == (N, N) for var in C3x.data_vars)
    assert all(C3x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
    assert all(C3x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])


def test_T4_to_C4():

    N = 128
    D = 4
    v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
    # fake T3 matrix
    T4 = vec_to_mat(v)

    # Xarray version
    dims = ("y", "x")
    T4_dict = dict(
        m11=xr.DataArray(T4[..., 0, 0].real.astype("float32"), dims=dims),
        m22=xr.DataArray(T4[..., 1, 1].real.astype("float32"), dims=dims),
        m33=xr.DataArray(T4[..., 2, 2].real.astype("float32"), dims=dims),
        m44=xr.DataArray(T4[..., 2, 2].real.astype("float32"), dims=dims),
        m12=xr.DataArray(T4[..., 0, 1].astype("complex64"), dims=dims),
        m13=xr.DataArray(T4[..., 0, 2].astype("complex64"), dims=dims),
        m14=xr.DataArray(T4[..., 0, 3].astype("complex64"), dims=dims),
        m23=xr.DataArray(T4[..., 1, 2].astype("complex64"), dims=dims),
        m24=xr.DataArray(T4[..., 1, 3].astype("complex64"), dims=dims),
        m34=xr.DataArray(T4[..., 2, 3].astype("complex64"), dims=dims),
    )
    T4x = xr.Dataset(T4_dict, attrs=dict(poltype="T4"))
    C4x = T4_to_C4(T4x)
    # test ouput shapes and types
    assert C4x.poltype == "C4"
    assert all(C4x[var].shape == (N, N) for var in C4x.data_vars)
    assert all(C4x[var].dtype == "float32" for var in ["m11", "m22", "m33", "m44"])
    assert all(
        C4x[var].dtype == "complex64"
        for var in ["m12", "m13", "m14", "m23", "m23", "m34"]
    )


def test_C3_to_T3():

    N = 128
    D = 3
    v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
    # fake T3 matrix
    C3 = vec_to_mat(v)

    # Xarray version
    dims = ("y", "x")
    C3_dict = dict(
        m11=xr.DataArray(C3[..., 0, 0].real.astype("float32"), dims=dims),
        m22=xr.DataArray(C3[..., 1, 1].real.astype("float32"), dims=dims),
        m33=xr.DataArray(C3[..., 2, 2].real.astype("float32"), dims=dims),
        m12=xr.DataArray(C3[..., 0, 1].astype("complex64"), dims=dims),
        m13=xr.DataArray(C3[..., 0, 2].astype("complex64"), dims=dims),
        m23=xr.DataArray(C3[..., 1, 2].astype("complex64"), dims=dims),
    )
    C3x = xr.Dataset(C3_dict, attrs=dict(poltype="C3"))
    T3x = C3_to_T3(C3x)
    # test ouput shapes and types
    assert T3x.poltype == "T3"
    assert all(T3x[var].shape == (N, N) for var in T3x.data_vars)
    assert all(T3x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
    assert all(T3x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])


def test_C4_to_T4():

    N = 128
    D = 4
    v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
    # fake T3 matrix
    C4 = vec_to_mat(v)

    # Xarray version
    dims = ("y", "x")
    C4_dict = dict(
        m11=xr.DataArray(C4[..., 0, 0].real.astype("float32"), dims=dims),
        m22=xr.DataArray(C4[..., 1, 1].real.astype("float32"), dims=dims),
        m33=xr.DataArray(C4[..., 2, 2].real.astype("float32"), dims=dims),
        m44=xr.DataArray(C4[..., 2, 2].real.astype("float32"), dims=dims),
        m12=xr.DataArray(C4[..., 0, 1].astype("complex64"), dims=dims),
        m13=xr.DataArray(C4[..., 0, 2].astype("complex64"), dims=dims),
        m14=xr.DataArray(C4[..., 0, 3].astype("complex64"), dims=dims),
        m23=xr.DataArray(C4[..., 1, 2].astype("complex64"), dims=dims),
        m24=xr.DataArray(C4[..., 1, 3].astype("complex64"), dims=dims),
        m34=xr.DataArray(C4[..., 2, 3].astype("complex64"), dims=dims),
    )
    C4x = xr.Dataset(C4_dict, attrs=dict(poltype="C4"))
    T4x = C4_to_T4(C4x)
    # test ouput shapes and types
    assert T4x.poltype == "T4"
    assert all(T4x[var].shape == (N, N) for var in T4x.data_vars)
    assert all(T4x[var].dtype == "float32" for var in ["m11", "m22", "m33", "m44"])
    assert all(
        T4x[var].dtype == "complex64"
        for var in ["m12", "m13", "m14", "m23", "m23", "m34"]
    )


def test_boxcar():

    N = 128
    D = 3
    v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)

    M = vec_to_mat(v)

    # Xarray version
    dims = ("y", "x")
    M_dict = dict(
        m11=xr.DataArray(M[..., 0, 0].real.astype("float32"), dims=dims),
        m22=xr.DataArray(M[..., 1, 1].real.astype("float32"), dims=dims),
        m33=xr.DataArray(M[..., 2, 2].real.astype("float32"), dims=dims),
        m12=xr.DataArray(M[..., 0, 1].astype("complex64"), dims=dims),
        m13=xr.DataArray(M[..., 0, 2].astype("complex64"), dims=dims),
        m23=xr.DataArray(M[..., 1, 2].astype("complex64"), dims=dims),
    )
    Mx = xr.Dataset(M_dict, attrs={"poltype": "C3"})
    param = {"img": Mx, "dim_az": 5, "dim_rg": 3}
    M_box = boxcar(**param)

    # test ouput shapes and types
    assert all(M_box[var].shape == (N, N) for var in Mx.data_vars)
    assert all(M_box[var].dtype == "float32" for var in ["m11", "m22", "m33"])
    assert all(M_box[var].dtype == "complex64" for var in ["m12", "m13", "m23"])


@pytest.mark.parametrize(
    "synthetic_poldata", ["C2", "C3", "C4", "T3", "T4"], indirect=True
)
def test_multilook(synthetic_poldata):
    input_data = synthetic_poldata
    dim_az = 5
    dim_rg = 2
    for _, ds in input_data.items():
        input_data = ds.chunk(x=64, y=64)
        res = multilook(input_data=input_data, dim_az=dim_az, dim_rg=dim_rg)
        var = "hh" if "hh" in ds.data_vars else "m11"
        for var in input_data.data_vars:
            shp = ds[var].shape
            naz_out = shp[0] // dim_az
            nrg_out = shp[1] // dim_rg
            assert res[var].shape == (naz_out, nrg_out)
            assert res[var].dtype == input_data[var].dtype


@pytest.mark.parametrize("synthetic_poldata", ["S", "C3", "T3"], indirect=True)
def test_pauli_rgb(synthetic_poldata):
    input_data = synthetic_poldata
    for _, ds in input_data.items():
        input_data = ds.chunk(x=64, y=64)
        res = pauli_rgb(input_data=input_data)
        var = "hh" if "hh" in ds.data_vars else "m11"
        shp = ds[var].shape
        assert res.shape == (3,) + shp
        assert res.dtype == "float32"