1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
import pytest
import numpy as np
import xarray as xr
from polsarpro.util import vec_to_mat
from polsarpro.util import S_to_C3, S_to_C4, S_to_C2
from polsarpro.util import S_to_T3, S_to_T4
from polsarpro.util import T3_to_C3, T4_to_C4
from polsarpro.util import C3_to_T3, C4_to_T4
from polsarpro.util import boxcar
from polsarpro.util import multilook
from polsarpro.util import pauli_rgb
def test_vec_to_mat():
N = 128
D = 3
v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
M = vec_to_mat(v)
assert M.shape == (N, N, D, D)
# M has to be Hermitian
assert np.allclose(M.transpose((0, 1, 3, 2)), M.conj())
assert np.allclose(M.diagonal(axis1=2, axis2=3).imag, 0)
def test_S_to_C2():
N = 128
S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
"complex64"
)
dims = ("y", "x")
S_dict = dict(
hh=xr.DataArray(S[..., 0, 0], dims=dims),
hv=xr.DataArray(S[..., 0, 1], dims=dims),
vh=xr.DataArray(S[..., 1, 0], dims=dims),
vv=xr.DataArray(S[..., 1, 1], dims=dims),
)
Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
C2x = S_to_C2(Sx)
# test ouput shapes and types
assert C2x.poltype == "C2"
assert all(C2x[var].shape == (N, N) for var in C2x.data_vars)
assert all(C2x[var].dtype == "float32" for var in ["m11", "m22"])
assert all(C2x[var].dtype == "complex64" for var in ["m12"])
def test_S_to_C3():
N = 128
S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
"complex64"
)
dims = ("y", "x")
S_dict = dict(
hh=xr.DataArray(S[..., 0, 0], dims=dims),
hv=xr.DataArray(S[..., 0, 1], dims=dims),
vh=xr.DataArray(S[..., 1, 0], dims=dims),
vv=xr.DataArray(S[..., 1, 1], dims=dims),
)
Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
C3x = S_to_C3(Sx)
# test ouput shapes and types
assert C3x.poltype == "C3"
assert all(C3x[var].shape == (N, N) for var in C3x.data_vars)
assert all(C3x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
assert all(C3x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])
def test_S_to_C4():
N = 128
S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
"complex64"
)
dims = ("y", "x")
S_dict = dict(
hh=xr.DataArray(S[..., 0, 0], dims=dims),
hv=xr.DataArray(S[..., 0, 1], dims=dims),
vh=xr.DataArray(S[..., 1, 0], dims=dims),
vv=xr.DataArray(S[..., 1, 1], dims=dims),
)
Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
C4x = S_to_C4(Sx)
# test ouput shapes and types
assert C4x.poltype == "C4"
assert all(C4x[var].shape == (N, N) for var in C4x.data_vars)
assert all(C4x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
assert all(C4x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])
def test_S_to_T3():
N = 128
S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
"complex64"
)
dims = ("y", "x")
S_dict = dict(
hh=xr.DataArray(S[..., 0, 0], dims=dims),
hv=xr.DataArray(S[..., 0, 1], dims=dims),
vh=xr.DataArray(S[..., 1, 0], dims=dims),
vv=xr.DataArray(S[..., 1, 1], dims=dims),
)
Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
T3x = S_to_T3(Sx)
# test ouput shapes and types
assert T3x.poltype == "T3"
assert all(T3x[var].shape == (N, N) for var in T3x.data_vars)
assert all(T3x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
assert all(T3x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])
def test_S_to_T4():
N = 128
S = (np.random.rand(N, N, 2, 2) + 1j * np.random.rand(N, N, 2, 2)).astype(
"complex64"
)
# Xarray version
dims = ("y", "x")
S_dict = dict(
hh=xr.DataArray(S[..., 0, 0], dims=dims),
hv=xr.DataArray(S[..., 0, 1], dims=dims),
vh=xr.DataArray(S[..., 1, 0], dims=dims),
vv=xr.DataArray(S[..., 1, 1], dims=dims),
)
Sx = xr.Dataset(S_dict, attrs=dict(poltype="S"))
T4x = S_to_T4(Sx)
# test ouput shapes and types
assert T4x.poltype == "T4"
assert all(T4x[var].shape == (N, N) for var in T4x.data_vars)
assert all(T4x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
assert all(T4x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])
def test_T3_to_C3():
N = 128
D = 3
v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
# fake T3 matrix
T3 = vec_to_mat(v)
dims = ("y", "x")
T3_dict = dict(
m11=xr.DataArray(T3[..., 0, 0].real.astype("float32"), dims=dims),
m22=xr.DataArray(T3[..., 1, 1].real.astype("float32"), dims=dims),
m33=xr.DataArray(T3[..., 2, 2].real.astype("float32"), dims=dims),
m12=xr.DataArray(T3[..., 0, 1].astype("complex64"), dims=dims),
m13=xr.DataArray(T3[..., 0, 2].astype("complex64"), dims=dims),
m23=xr.DataArray(T3[..., 1, 2].astype("complex64"), dims=dims),
)
T3x = xr.Dataset(T3_dict, attrs=dict(poltype="T3"))
C3x = T3_to_C3(T3x)
# test ouput shapes and types
assert C3x.poltype == "C3"
assert all(C3x[var].shape == (N, N) for var in C3x.data_vars)
assert all(C3x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
assert all(C3x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])
def test_T4_to_C4():
N = 128
D = 4
v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
# fake T3 matrix
T4 = vec_to_mat(v)
# Xarray version
dims = ("y", "x")
T4_dict = dict(
m11=xr.DataArray(T4[..., 0, 0].real.astype("float32"), dims=dims),
m22=xr.DataArray(T4[..., 1, 1].real.astype("float32"), dims=dims),
m33=xr.DataArray(T4[..., 2, 2].real.astype("float32"), dims=dims),
m44=xr.DataArray(T4[..., 2, 2].real.astype("float32"), dims=dims),
m12=xr.DataArray(T4[..., 0, 1].astype("complex64"), dims=dims),
m13=xr.DataArray(T4[..., 0, 2].astype("complex64"), dims=dims),
m14=xr.DataArray(T4[..., 0, 3].astype("complex64"), dims=dims),
m23=xr.DataArray(T4[..., 1, 2].astype("complex64"), dims=dims),
m24=xr.DataArray(T4[..., 1, 3].astype("complex64"), dims=dims),
m34=xr.DataArray(T4[..., 2, 3].astype("complex64"), dims=dims),
)
T4x = xr.Dataset(T4_dict, attrs=dict(poltype="T4"))
C4x = T4_to_C4(T4x)
# test ouput shapes and types
assert C4x.poltype == "C4"
assert all(C4x[var].shape == (N, N) for var in C4x.data_vars)
assert all(C4x[var].dtype == "float32" for var in ["m11", "m22", "m33", "m44"])
assert all(
C4x[var].dtype == "complex64"
for var in ["m12", "m13", "m14", "m23", "m23", "m34"]
)
def test_C3_to_T3():
N = 128
D = 3
v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
# fake T3 matrix
C3 = vec_to_mat(v)
# Xarray version
dims = ("y", "x")
C3_dict = dict(
m11=xr.DataArray(C3[..., 0, 0].real.astype("float32"), dims=dims),
m22=xr.DataArray(C3[..., 1, 1].real.astype("float32"), dims=dims),
m33=xr.DataArray(C3[..., 2, 2].real.astype("float32"), dims=dims),
m12=xr.DataArray(C3[..., 0, 1].astype("complex64"), dims=dims),
m13=xr.DataArray(C3[..., 0, 2].astype("complex64"), dims=dims),
m23=xr.DataArray(C3[..., 1, 2].astype("complex64"), dims=dims),
)
C3x = xr.Dataset(C3_dict, attrs=dict(poltype="C3"))
T3x = C3_to_T3(C3x)
# test ouput shapes and types
assert T3x.poltype == "T3"
assert all(T3x[var].shape == (N, N) for var in T3x.data_vars)
assert all(T3x[var].dtype == "float32" for var in ["m11", "m22", "m33"])
assert all(T3x[var].dtype == "complex64" for var in ["m12", "m13", "m23"])
def test_C4_to_T4():
N = 128
D = 4
v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
# fake T3 matrix
C4 = vec_to_mat(v)
# Xarray version
dims = ("y", "x")
C4_dict = dict(
m11=xr.DataArray(C4[..., 0, 0].real.astype("float32"), dims=dims),
m22=xr.DataArray(C4[..., 1, 1].real.astype("float32"), dims=dims),
m33=xr.DataArray(C4[..., 2, 2].real.astype("float32"), dims=dims),
m44=xr.DataArray(C4[..., 2, 2].real.astype("float32"), dims=dims),
m12=xr.DataArray(C4[..., 0, 1].astype("complex64"), dims=dims),
m13=xr.DataArray(C4[..., 0, 2].astype("complex64"), dims=dims),
m14=xr.DataArray(C4[..., 0, 3].astype("complex64"), dims=dims),
m23=xr.DataArray(C4[..., 1, 2].astype("complex64"), dims=dims),
m24=xr.DataArray(C4[..., 1, 3].astype("complex64"), dims=dims),
m34=xr.DataArray(C4[..., 2, 3].astype("complex64"), dims=dims),
)
C4x = xr.Dataset(C4_dict, attrs=dict(poltype="C4"))
T4x = C4_to_T4(C4x)
# test ouput shapes and types
assert T4x.poltype == "T4"
assert all(T4x[var].shape == (N, N) for var in T4x.data_vars)
assert all(T4x[var].dtype == "float32" for var in ["m11", "m22", "m33", "m44"])
assert all(
T4x[var].dtype == "complex64"
for var in ["m12", "m13", "m14", "m23", "m23", "m34"]
)
def test_boxcar():
N = 128
D = 3
v = np.random.rand(N, N, D) + 1j * np.random.rand(N, N, D)
M = vec_to_mat(v)
# Xarray version
dims = ("y", "x")
M_dict = dict(
m11=xr.DataArray(M[..., 0, 0].real.astype("float32"), dims=dims),
m22=xr.DataArray(M[..., 1, 1].real.astype("float32"), dims=dims),
m33=xr.DataArray(M[..., 2, 2].real.astype("float32"), dims=dims),
m12=xr.DataArray(M[..., 0, 1].astype("complex64"), dims=dims),
m13=xr.DataArray(M[..., 0, 2].astype("complex64"), dims=dims),
m23=xr.DataArray(M[..., 1, 2].astype("complex64"), dims=dims),
)
Mx = xr.Dataset(M_dict, attrs={"poltype": "C3"})
param = {"img": Mx, "dim_az": 5, "dim_rg": 3}
M_box = boxcar(**param)
# test ouput shapes and types
assert all(M_box[var].shape == (N, N) for var in Mx.data_vars)
assert all(M_box[var].dtype == "float32" for var in ["m11", "m22", "m33"])
assert all(M_box[var].dtype == "complex64" for var in ["m12", "m13", "m23"])
@pytest.mark.parametrize(
"synthetic_poldata", ["C2", "C3", "C4", "T3", "T4"], indirect=True
)
def test_multilook(synthetic_poldata):
input_data = synthetic_poldata
dim_az = 5
dim_rg = 2
for _, ds in input_data.items():
input_data = ds.chunk(x=64, y=64)
res = multilook(input_data=input_data, dim_az=dim_az, dim_rg=dim_rg)
var = "hh" if "hh" in ds.data_vars else "m11"
for var in input_data.data_vars:
shp = ds[var].shape
naz_out = shp[0] // dim_az
nrg_out = shp[1] // dim_rg
assert res[var].shape == (naz_out, nrg_out)
assert res[var].dtype == input_data[var].dtype
@pytest.mark.parametrize("synthetic_poldata", ["S", "C3", "T3"], indirect=True)
def test_pauli_rgb(synthetic_poldata):
input_data = synthetic_poldata
for _, ds in input_data.items():
input_data = ds.chunk(x=64, y=64)
res = pauli_rgb(input_data=input_data)
var = "hh" if "hh" in ds.data_vars else "m11"
shp = ds[var].shape
assert res.shape == (3,) + shp
assert res.dtype == "float32"
|