File: pydantic_factory.py

package info (click to toggle)
python-polyfactory 2.22.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,892 kB
  • sloc: python: 11,338; makefile: 103; sh: 37
file content (704 lines) | stat: -rw-r--r-- 27,380 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
from __future__ import annotations

from contextlib import suppress
from datetime import timezone
from functools import partial
from os.path import realpath
from pathlib import Path
from typing import TYPE_CHECKING, Any, ClassVar, ForwardRef, Generic, Mapping, TypeVar, cast
from uuid import NAMESPACE_DNS, uuid1, uuid3, uuid5

from typing_extensions import Literal, get_args

from polyfactory.exceptions import MissingDependencyException
from polyfactory.factories.base import BaseFactory, BuildContext
from polyfactory.factories.base import BuildContext as BaseBuildContext
from polyfactory.field_meta import Constraints, FieldMeta, Null
from polyfactory.utils.deprecation import check_for_deprecated_parameters
from polyfactory.utils.helpers import unwrap_new_type, unwrap_optional
from polyfactory.utils.normalize_type import normalize_type
from polyfactory.utils.predicates import is_annotated, is_optional, is_safe_subclass, is_union
from polyfactory.utils.types import NoneType
from polyfactory.value_generators.primitives import create_random_bytes

try:
    import pydantic
    from pydantic import (
        VERSION,
        AnyHttpUrl,
        AnyUrl,
        ByteSize,
        EmailStr,
        FutureDate,
        HttpUrl,
        IPvAnyAddress,
        IPvAnyInterface,
        IPvAnyNetwork,
        Json,
        NameEmail,
        NegativeFloat,
        NegativeInt,
        NonNegativeInt,
        NonPositiveFloat,
        PastDate,
        PaymentCardNumber,
        PositiveFloat,
        PositiveInt,
        SecretBytes,
        SecretStr,
        StrictBool,
        StrictBytes,
        StrictFloat,
        StrictInt,
        StrictStr,
    )
    from pydantic.fields import FieldInfo
except ImportError as e:
    msg = "pydantic is not installed"
    raise MissingDependencyException(msg) from e

try:
    # pydantic v1
    import pydantic as pydantic_v1
    from pydantic import BaseModel as BaseModelV1

    # Keep this import last to prevent warnings from pydantic if pydantic v2
    # is installed.
    from pydantic.color import Color
    from pydantic.fields import (  # type: ignore[attr-defined]
        DeferredType,  # pyright: ignore[attr-defined,reportAttributeAccessIssue]
        ModelField,  # pyright: ignore[attr-defined,reportAttributeAccessIssue]
        Undefined,  # pyright: ignore[attr-defined,reportAttributeAccessIssue]
    )

    # prevent unbound variable warnings
    BaseModelV2 = BaseModelV1
    UndefinedV2 = Undefined
except ImportError:
    # pydantic v2

    # v2 specific imports
    from pydantic import BaseModel as BaseModelV2
    from pydantic_core import PydanticUndefined as UndefinedV2
    from pydantic_core import to_json

    import pydantic.v1 as pydantic_v1  # type: ignore[no-redef]
    from pydantic.v1 import BaseModel as BaseModelV1  # type: ignore[assignment]
    from pydantic.v1.color import Color  # type: ignore[assignment]
    from pydantic.v1.fields import DeferredType, ModelField, Undefined


if TYPE_CHECKING:
    from collections import abc
    from random import Random
    from typing import Callable, Sequence

    from typing_extensions import NotRequired, TypeGuard

    from pydantic import BaseModel

T = TypeVar("T", bound="BaseModel")

_IS_PYDANTIC_V1 = VERSION.startswith("1")


class PydanticBuildContext(BaseBuildContext):
    factory_use_construct: bool


class PydanticConstraints(Constraints):
    """Metadata regarding a Pydantic type constraints, if any"""

    json: NotRequired[bool]


class PydanticFieldMeta(FieldMeta):
    """Field meta subclass capable of handling pydantic ModelFields"""

    def __init__(
        self,
        *,
        name: str,
        annotation: type,
        random: Random | None = None,
        default: Any = ...,
        children: list[FieldMeta] | None = None,
        constraints: PydanticConstraints | None = None,
        examples: list[Any] | None = None,
    ) -> None:
        super().__init__(
            name=name,
            annotation=annotation,
            random=random,
            default=default,
            children=children,
            constraints=constraints,
        )
        self.examples = examples

    @classmethod
    def from_field_info(
        cls,
        field_name: str,
        field_info: FieldInfo,
        use_alias: bool,
        random: Random | None = None,
        randomize_collection_length: bool | None = None,
        min_collection_length: int | None = None,
        max_collection_length: int | None = None,
    ) -> PydanticFieldMeta:
        """Create an instance from a pydantic field info.

        :param field_name: The name of the field.
        :param field_info: A pydantic FieldInfo instance.
        :param use_alias: Whether to use the field alias.
        :param random: A random.Random instance.
        :param randomize_collection_length: Whether to randomize collection length.
        :param min_collection_length: Minimum collection length.
        :param max_collection_length: Maximum collection length.

        :returns: A PydanticFieldMeta instance.
        """
        check_for_deprecated_parameters(
            "2.11.0",
            parameters=(
                ("randomize_collection_length", randomize_collection_length),
                ("min_collection_length", min_collection_length),
                ("max_collection_length", max_collection_length),
                ("random", random),
            ),
        )
        field_info = FieldInfo.merge_field_infos(
            field_info,
            FieldInfo.from_annotation(normalize_type(field_info.annotation)),
            alias=field_info.alias,
        )

        if callable(field_info.default_factory):
            default_value = field_info.default_factory
        else:
            default_value = field_info.default if field_info.default is not UndefinedV2 else Null

        annotation = unwrap_new_type(field_info.annotation)
        children: list[FieldMeta,] | None = None
        name = field_info.alias if field_info.alias and use_alias else field_name

        constraints: PydanticConstraints
        # pydantic v2 does not always propagate metadata for Union types
        if is_union(annotation):
            constraints = {}
            children = []

            # create a child for each of the possible union values
            for arg in get_args(annotation):
                # don't add the NoneType in an optional to the list of children
                if arg is NoneType:
                    continue
                child_field_info = FieldInfo.from_annotation(arg)
                merged_field_info = FieldInfo.merge_field_infos(field_info, child_field_info)

                children.append(
                    # recurse for each element of the union
                    cls.from_field_info(
                        # this is a fake field name, but it makes it possible to debug which type variant
                        # is the source of an exception downstream
                        field_name=field_name,
                        field_info=merged_field_info,
                        use_alias=use_alias,
                    ),
                )
        else:
            metadata, is_json = [], False
            for m in field_info.metadata:
                if not is_json and isinstance(m, Json):  # type: ignore[misc]
                    is_json = True
                elif m is not None:
                    metadata.append(m)

            constraints = cast(
                "PydanticConstraints",
                cls.parse_constraints(metadata=metadata) if metadata else {},
            )

            if "url" in constraints:
                # pydantic uses a sentinel value for url constraints
                annotation = str

            if is_json:
                constraints["json"] = True

        result = super().from_type(
            annotation=annotation,
            children=children,
            constraints=cast("Constraints", {k: v for k, v in constraints.items() if v is not None}) or None,
            default=default_value,
            name=name,
        )
        result.examples = field_info.examples
        return result

    @classmethod
    def from_model_field(  # pragma: no cover
        cls,
        model_field: ModelField,  # pyright: ignore[reportGeneralTypeIssues]
        use_alias: bool,
        randomize_collection_length: bool | None = None,
        min_collection_length: int | None = None,
        max_collection_length: int | None = None,
        random: Random | None = None,
    ) -> PydanticFieldMeta:
        """Create an instance from a pydantic model field.
        :param model_field: A pydantic ModelField.
        :param use_alias: Whether to use the field alias.
        :param randomize_collection_length: A boolean flag whether to randomize collections lengths
        :param min_collection_length: Minimum number of elements in randomized collection
        :param max_collection_length: Maximum number of elements in randomized collection
        :param random: An instance of random.Random.

        :returns: A PydanticFieldMeta instance.

        """
        check_for_deprecated_parameters(
            "2.11.0",
            parameters=(
                ("randomize_collection_length", randomize_collection_length),
                ("min_collection_length", min_collection_length),
                ("max_collection_length", max_collection_length),
                ("random", random),
            ),
        )

        if model_field.default is not Undefined:
            default_value = model_field.default
        elif callable(model_field.default_factory):
            default_value = model_field.default_factory()
        else:
            default_value = model_field.default if model_field.default is not Undefined else Null

        name = model_field.alias if model_field.alias and use_alias else model_field.name

        outer_type = unwrap_new_type(model_field.outer_type_)
        annotation = (
            model_field.outer_type_
            if isinstance(model_field.annotation, (DeferredType, ForwardRef))
            else unwrap_new_type(model_field.annotation)
        )

        # In pydantic v1, we need to check if the annotation is directly annotated to properly extract constraints
        # from the metadata, as v1 doesn't automatically propagate constraints like v2 does
        annotation_constraints: Constraints = {}
        if is_annotated(model_field.annotation):
            annotation_metadata = cls.get_constraints_metadata(model_field.annotation)
            annotation_constraints = cls.parse_constraints(annotation_metadata) if annotation_metadata else {}

        field_info_constraints = {
            "ge": getattr(outer_type, "ge", model_field.field_info.ge),
            "gt": getattr(outer_type, "gt", model_field.field_info.gt),
            "le": getattr(outer_type, "le", model_field.field_info.le),
            "lt": getattr(outer_type, "lt", model_field.field_info.lt),
            "min_length": (
                getattr(outer_type, "min_length", model_field.field_info.min_length)
                or getattr(outer_type, "min_items", model_field.field_info.min_items)
            ),
            "max_length": (
                getattr(outer_type, "max_length", model_field.field_info.max_length)
                or getattr(outer_type, "max_items", model_field.field_info.max_items)
            ),
            "pattern": getattr(outer_type, "regex", model_field.field_info.regex),
            "unique_items": getattr(outer_type, "unique_items", model_field.field_info.unique_items),
            "decimal_places": getattr(outer_type, "decimal_places", None),
            "max_digits": getattr(outer_type, "max_digits", None),
            "multiple_of": getattr(outer_type, "multiple_of", None),
            "upper_case": getattr(outer_type, "to_upper", None),
            "lower_case": getattr(outer_type, "to_lower", None),
            "item_type": getattr(outer_type, "item_type", None),
        }

        constraints = cast("Constraints", {**field_info_constraints, **annotation_constraints})

        # pydantic v1 has constraints set for these values, but we generate them using faker
        if unwrap_optional(annotation) in (
            AnyUrl,
            AnyHttpUrl,
            HttpUrl,
            pydantic_v1.AnyUrl,
            pydantic_v1.AnyHttpUrl,
            pydantic_v1.HttpUrl,
            pydantic_v1.KafkaDsn,
            pydantic_v1.PostgresDsn,
            pydantic_v1.RedisDsn,
            pydantic_v1.AmqpDsn,
            pydantic_v1.EmailStr,
            pydantic_v1.NameEmail,
        ):
            constraints = {}

        if model_field.field_info.const and (
            default_value is None or isinstance(default_value, (int, bool, str, bytes))
        ):
            annotation = Literal[default_value]

        children: list[FieldMeta] = []

        # Refer #412.
        args = get_args(model_field.annotation)
        if is_optional(model_field.annotation) and len(args) == 2:  # noqa: PLR2004
            child_annotation = args[0] if args[0] is not NoneType else args[1]
            children.append(PydanticFieldMeta.from_type(child_annotation))
        elif model_field.key_field or model_field.sub_fields:
            fields_to_iterate = (
                ([model_field.key_field, *model_field.sub_fields])
                if model_field.key_field is not None
                else model_field.sub_fields
            )
            children.extend(
                PydanticFieldMeta.from_model_field(
                    model_field=arg,
                    use_alias=use_alias,
                )
                for arg in fields_to_iterate
            )

        examples = None

        return PydanticFieldMeta(
            name=name,
            annotation=annotation,  # pyright: ignore[reportArgumentType]
            children=children or None,
            default=default_value,
            constraints=cast("PydanticConstraints", {k: v for k, v in constraints.items() if v is not None}) or None,
            examples=examples,
        )

    if not _IS_PYDANTIC_V1:

        @classmethod
        def get_constraints_metadata(cls, annotation: Any) -> Sequence[Any]:
            metadata = []
            for m in super().get_constraints_metadata(annotation):
                if isinstance(m, FieldInfo):
                    metadata.extend(m.metadata)
                else:
                    metadata.append(m)

            return metadata


class ModelFactory(Generic[T], BaseFactory[T]):
    """Base factory for pydantic models"""

    __forward_ref_resolution_type_mapping__: ClassVar[Mapping[str, type]] = {}
    __is_base_factory__ = True
    __use_examples__: ClassVar[bool] = False  # for backwards compatibility
    """
    Flag indicating whether to use a random example, if provided (Pydantic >=V2)

    Example code::

        class Payment(BaseModel):
            amount: int = Field(0)
            currency: str = Field(examples=['USD', 'EUR', 'INR'])

        class PaymentFactory(ModelFactory[Payment]):
            __use_examples__ = True

    >>> payment = PaymentFactory.build()
    >>> payment
    Payment(amount=120, currency="EUR")
    """
    if not _IS_PYDANTIC_V1:
        __forward_references__: ClassVar[dict[str, Any]] = {
            # Resolve to str to avoid recursive issues
            "JsonValue": str,
        }

    __config_keys__ = (
        *BaseFactory.__config_keys__,
        "__use_examples__",
    )

    def __init_subclass__(cls, *args: Any, **kwargs: Any) -> None:
        super().__init_subclass__(*args, **kwargs)

        model = getattr(cls, "__model__", None)
        if model is None:
            return

        if _is_pydantic_v1_model(model) and hasattr(cls.__model__, "update_forward_refs"):
            with suppress(NameError):  # pragma: no cover
                cls.__model__.update_forward_refs(**cls.__forward_ref_resolution_type_mapping__)

        if _is_pydantic_v2_model(model):
            model.model_rebuild()

    @classmethod
    def is_supported_type(cls, value: Any) -> TypeGuard[type[T]]:
        """Determine whether the given value is supported by the factory.

        :param value: An arbitrary value.
        :returns: A typeguard
        """

        return _is_pydantic_v1_model(value) or _is_pydantic_v2_model(value)

    @classmethod
    def get_model_fields(cls) -> list["FieldMeta"]:
        """Retrieve a list of fields from the factory's model.


        :returns: A list of field MetaData instances.

        """
        if "_fields_metadata" not in cls.__dict__:
            if _is_pydantic_v1_model(cls.__model__):
                cls._fields_metadata = [
                    PydanticFieldMeta.from_model_field(
                        field,
                        use_alias=not cls.__model__.__config__.allow_population_by_field_name,  # type: ignore[attr-defined]
                    )
                    for field in cls.__model__.__fields__.values()
                ]
            else:
                cls._fields_metadata = [
                    PydanticFieldMeta.from_field_info(
                        field_info=field_info,
                        field_name=field_name,
                        use_alias=not cls.__model__.model_config.get(  # pyright: ignore[reportGeneralTypeIssues]
                            "populate_by_name",
                            False,
                        ),
                    )
                    for field_name, field_info in cls.__model__.model_fields.items()  # pyright: ignore[reportGeneralTypeIssues]
                ]
        return cls._fields_metadata

    @classmethod
    def get_constrained_field_value(
        cls,
        annotation: Any,
        field_meta: FieldMeta,
        field_build_parameters: Any | None = None,
        build_context: BuildContext | None = None,
    ) -> Any:
        constraints = cast("PydanticConstraints", field_meta.constraints)

        if constraints.pop("json", None):
            value = cls.get_field_value(
                field_meta, field_build_parameters=field_build_parameters, build_context=build_context
            )
            return to_json(value)  # pyright: ignore[reportPossiblyUnboundVariable]

        return super().get_constrained_field_value(
            annotation, field_meta, field_build_parameters=field_build_parameters, build_context=build_context
        )

    @classmethod
    def get_field_value(
        cls,
        field_meta: FieldMeta,
        field_build_parameters: Any | None = None,
        build_context: BuildContext | None = None,
    ) -> Any:
        """Return a value from examples if exists, else random value.

        :param field_meta: FieldMeta instance.
        :param field_build_parameters: Any build parameters passed to the factory as kwarg values.
        :param build_context: BuildContext data for current build.

        :returns: An arbitrary value.

        """
        result: Any

        field_meta = cast("PydanticFieldMeta", field_meta)

        if cls.__use_examples__ and field_meta.examples:
            result = cls.__random__.choice(field_meta.examples)
        else:
            result = super().get_field_value(
                field_meta=field_meta, field_build_parameters=field_build_parameters, build_context=build_context
            )
        return result

    @classmethod
    def build(
        cls,
        factory_use_construct: bool = False,
        **kwargs: Any,
    ) -> T:
        """Build an instance of the factory's __model__

        :param factory_use_construct: A boolean that determines whether validations will be made when instantiating the
                model. This is supported only for pydantic models.
        :param kwargs: Any kwargs. If field_meta names are set in kwargs, their values will be used.

        :returns: An instance of type T.

        """

        if "_build_context" not in kwargs:
            kwargs["_build_context"] = PydanticBuildContext(
                seen_models=set(),
                factory_use_construct=factory_use_construct,
            )

        processed_kwargs = cls.process_kwargs(**kwargs)

        return cls._create_model(kwargs["_build_context"], **processed_kwargs)

    @classmethod
    def _get_build_context(cls, build_context: BaseBuildContext | PydanticBuildContext | None) -> PydanticBuildContext:
        """Return a PydanticBuildContext instance. If build_context is None, return a new PydanticBuildContext.

        :returns: PydanticBuildContext

        """
        build_context = cast("PydanticBuildContext", super()._get_build_context(build_context))
        if build_context.get("factory_use_construct") is None:
            build_context["factory_use_construct"] = False

        return build_context

    @classmethod
    def _create_model(cls, _build_context: PydanticBuildContext, **kwargs: Any) -> T:
        """Create an instance of the factory's __model__

        :param _build_context: BuildContext instance.
        :param kwargs: Model kwargs.

        :returns: An instance of type T.

        """
        if _build_context.get("factory_use_construct"):
            if _is_pydantic_v1_model(cls.__model__):
                return cls.__model__.construct(**kwargs)  # type: ignore[return-value]
            return cls.__model__.model_construct(**kwargs)
        return cls.__model__(**kwargs)

    @classmethod
    def coverage(cls, factory_use_construct: bool = False, **kwargs: Any) -> abc.Iterator[T]:
        """Build a batch of the factory's Meta.model will full coverage of the sub-types of the model.

        :param kwargs: Any kwargs. If field_meta names are set in kwargs, their values will be used.

        :returns: A iterator of instances of type T.

        """

        if "_build_context" not in kwargs:
            kwargs["_build_context"] = PydanticBuildContext(
                seen_models=set(), factory_use_construct=factory_use_construct
            )

        for data in cls.process_kwargs_coverage(**kwargs):
            yield cls._create_model(_build_context=kwargs["_build_context"], **data)

    @classmethod
    def is_custom_root_field(cls, field_meta: FieldMeta) -> bool:
        """Determine whether the field is a custom root field.

        :param field_meta: FieldMeta instance.

        :returns: A boolean determining whether the field is a custom root.

        """
        return field_meta.name == "__root__"

    @classmethod
    def should_set_field_value(cls, field_meta: FieldMeta, **kwargs: Any) -> bool:
        """Determine whether to set a value for a given field_name.
        This is an override of BaseFactory.should_set_field_value.

        :param field_meta: FieldMeta instance.
        :param kwargs: Any kwargs passed to the factory.

        :returns: A boolean determining whether a value should be set for the given field_meta.

        """
        return field_meta.name not in kwargs and (
            not field_meta.name.startswith("_") or cls.is_custom_root_field(field_meta)
        )

    @classmethod
    def get_provider_map(cls) -> dict[Any, Callable[[], Any]]:
        mapping: dict[Any, Callable[[], Any]] = {
            ByteSize: cls.__faker__.pyint,
            PositiveInt: cls.__faker__.pyint,
            NegativeFloat: lambda: cls.__random__.uniform(-100, -1),
            NegativeInt: lambda: cls.__faker__.pyint() * -1,
            PositiveFloat: cls.__faker__.pyint,
            NonPositiveFloat: lambda: cls.__random__.uniform(-100, 0),
            NonNegativeInt: cls.__faker__.pyint,
            StrictInt: cls.__faker__.pyint,
            StrictBool: cls.__faker__.pybool,
            StrictBytes: lambda: create_random_bytes(cls.__random__),
            StrictFloat: cls.__faker__.pyfloat,
            StrictStr: cls.__faker__.pystr,
            EmailStr: cls.__faker__.free_email,
            NameEmail: cls.__faker__.free_email,
            Json: cls.__faker__.json,
            PaymentCardNumber: cls.__faker__.credit_card_number,
            AnyUrl: cls.__faker__.url,
            AnyHttpUrl: cls.__faker__.url,
            HttpUrl: cls.__faker__.url,
            SecretBytes: lambda: create_random_bytes(cls.__random__),
            SecretStr: cls.__faker__.pystr,
            IPvAnyAddress: cls.__faker__.ipv4,
            IPvAnyInterface: cls.__faker__.ipv4,
            IPvAnyNetwork: lambda: cls.__faker__.ipv4(network=True),
            PastDate: cls.__faker__.past_date,
            FutureDate: cls.__faker__.future_date,
        }

        # v1 only values
        mapping.update(
            {
                pydantic_v1.AnyUrl: cls.__faker__.url,
                pydantic_v1.AnyHttpUrl: cls.__faker__.url,
                pydantic_v1.HttpUrl: cls.__faker__.url,
                pydantic_v1.PyObject: lambda: "decimal.Decimal",
                pydantic_v1.AmqpDsn: lambda: "amqps://example.com",
                pydantic_v1.KafkaDsn: lambda: "kafka://localhost:9092",
                pydantic_v1.PostgresDsn: lambda: "postgresql://user@localhost",
                pydantic_v1.RedisDsn: lambda: "redis://localhost:6379/0",
                pydantic_v1.FilePath: lambda: Path(realpath(__file__)),
                pydantic_v1.DirectoryPath: lambda: Path(realpath(__file__)).parent,
                pydantic_v1.UUID1: uuid1,
                pydantic_v1.UUID3: lambda: uuid3(NAMESPACE_DNS, cls.__faker__.pystr()),
                pydantic_v1.UUID4: cls.__faker__.uuid4,
                pydantic_v1.UUID5: lambda: uuid5(NAMESPACE_DNS, cls.__faker__.pystr()),
                Color: cls.__faker__.hex_color,  # pyright: ignore[reportGeneralTypeIssues]
                pydantic_v1.EmailStr: cls.__faker__.free_email,
                pydantic_v1.NameEmail: cls.__faker__.free_email,
            },
        )

        if not _IS_PYDANTIC_V1:
            mapping.update(
                {
                    # pydantic v2 specific types
                    pydantic.PastDatetime: cls.__faker__.past_datetime,
                    pydantic.FutureDatetime: cls.__faker__.future_datetime,
                    pydantic.AwareDatetime: partial(cls.__faker__.date_time, timezone.utc),
                    pydantic.NaiveDatetime: cls.__faker__.date_time,
                    pydantic.networks.AmqpDsn: lambda: "amqps://example.com",
                    pydantic.networks.KafkaDsn: lambda: "kafka://localhost:9092",
                    pydantic.networks.PostgresDsn: lambda: "postgresql://user@localhost",
                    pydantic.networks.RedisDsn: lambda: "redis://localhost:6379/0",
                    pydantic.networks.MongoDsn: lambda: "mongodb://mongodb0.example.com:27017",
                    pydantic.networks.MariaDBDsn: lambda: "mariadb://example.com:3306",
                    pydantic.networks.CockroachDsn: lambda: "cockroachdb://example.com:5432",
                    pydantic.networks.MySQLDsn: lambda: "mysql://example.com:5432",
                },
            )

        mapping.update(super().get_provider_map())
        return mapping


def _is_pydantic_v1_model(model: Any) -> TypeGuard[BaseModelV1]:
    return is_safe_subclass(model, BaseModelV1)


def _is_pydantic_v2_model(model: Any) -> TypeGuard[BaseModelV2]:  # pyright: ignore[reportInvalidTypeForm]
    return not _IS_PYDANTIC_V1 and is_safe_subclass(model, BaseModelV2)