File: test_profile_hmm.py

package info (click to toggle)
python-pomegranate 0.15.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 36,948 kB
  • sloc: python: 11,489; makefile: 259; sh: 28
file content (475 lines) | stat: -rw-r--r-- 16,767 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
from __future__ import  (division, print_function)

from pomegranate import *
from numpy.testing import assert_almost_equal
import random
import numpy as np
import json
import pytest


@pytest.fixture
def model():
	'''
	Build a model that we want to use to test sequences. This model will
	be somewhat complicated, in order to extensively test YAHMM. This will be
	a three state global sequence alignment HMM. The HMM models a reference of
	'ACT', with pseudocounts to allow for slight deviations from this
	reference.
	'''

	random.seed(0)

	model = HiddenMarkovModel( "Global Alignment")

	# Define the distribution for insertions
	i_d = DiscreteDistribution( { 'A': 0.25, 'C': 0.25, 'G': 0.25, 'T': 0.25 } )

	# Create the insert states
	i0 = State( i_d, name="I0" )
	i1 = State( i_d, name="I1" )
	i2 = State( i_d, name="I2" )
	i3 = State( i_d, name="I3" )

	# Create the match states
	m1 = State( DiscreteDistribution({ "A": 0.95, 'C': 0.01, 'G': 0.01, 'T': 0.02 }) , name="M1" )
	m2 = State( DiscreteDistribution({ "A": 0.003, 'C': 0.99, 'G': 0.003, 'T': 0.004 }) , name="M2" )
	m3 = State( DiscreteDistribution({ "A": 0.01, 'C': 0.01, 'G': 0.01, 'T': 0.97 }) , name="M3" )

	# Create the delete states
	d1 = State( None, name="D1" )
	d2 = State( None, name="D2" )
	d3 = State( None, name="D3" )

	# Add all the states to the model
	model.add_states( [i0, i1, i2, i3, m1, m2, m3, d1, d2, d3 ] )

	# Create transitions from match states
	model.add_transition( model.start, m1, 0.9 )
	model.add_transition( model.start, i0, 0.1 )
	model.add_transition( m1, m2, 0.9 )
	model.add_transition( m1, i1, 0.05 )
	model.add_transition( m1, d2, 0.05 )
	model.add_transition( m2, m3, 0.9 )
	model.add_transition( m2, i2, 0.05 )
	model.add_transition( m2, d3, 0.05 )
	model.add_transition( m3, model.end, 0.9 )
	model.add_transition( m3, i3, 0.1 )

	# Create transitions from insert states
	model.add_transition( i0, i0, 0.70 )
	model.add_transition( i0, d1, 0.15 )
	model.add_transition( i0, m1, 0.15 )

	model.add_transition( i1, i1, 0.70 )
	model.add_transition( i1, d2, 0.15 )
	model.add_transition( i1, m2, 0.15 )

	model.add_transition( i2, i2, 0.70 )
	model.add_transition( i2, d3, 0.15 )
	model.add_transition( i2, m3, 0.15 )

	model.add_transition( i3, i3, 0.85 )
	model.add_transition( i3, model.end, 0.15 )

	# Create transitions from delete states
	model.add_transition( d1, d2, 0.15 )
	model.add_transition( d1, i1, 0.15 )
	model.add_transition( d1, m2, 0.70 )

	model.add_transition( d2, d3, 0.15 )
	model.add_transition( d2, i2, 0.15 )
	model.add_transition( d2, m3, 0.70 )

	model.add_transition( d3, i3, 0.30 )
	model.add_transition( d3, model.end, 0.70 )

	# Call bake to finalize the structure of the model.
	model.bake()
	return model


@pytest.fixture
def multitransition():
	'''
	Build a model that we want to use to test sequences. This is the same as the
	above model, except that it uses the multiple transition methods for building.
	'''

	random.seed(0)

	global model
	model = HiddenMarkovModel( "Global Alignment")

	# Define the distribution for insertions
	i_d = DiscreteDistribution( { 'A': 0.25, 'C': 0.25, 'G': 0.25, 'T': 0.25 } )

	# Create the insert states
	i0 = State( i_d, name="I0" )
	i1 = State( i_d, name="I1" )
	i2 = State( i_d, name="I2" )
	i3 = State( i_d, name="I3" )

	# Create the match states
	m1 = State( DiscreteDistribution({ "A": 0.95, 'C': 0.01, 'G': 0.01, 'T': 0.02 }) , name="M1" )
	m2 = State( DiscreteDistribution({ "A": 0.003, 'C': 0.99, 'G': 0.003, 'T': 0.004 }) , name="M2" )
	m3 = State( DiscreteDistribution({ "A": 0.01, 'C': 0.01, 'G': 0.01, 'T': 0.97 }) , name="M3" )

	# Create the delete states
	d1 = State( None, name="D1" )
	d2 = State( None, name="D2" )
	d3 = State( None, name="D3" )

	# Add all the states to the model
	model.add_states( [i0, i1, i2, i3, m1, m2, m3, d1, d2, d3 ] )

	# Create transitions from match states
	model.add_transitions( model.start, [m1, i0], [0.9, 0.1] )

	model.add_transitions( m1, [m2, i1, d2], [0.9, 0.05, 0.05] )
	model.add_transitions( m2, [m3, i2, d3], [0.9, 0.05, 0.05] )
	model.add_transitions( m3, [model.end, i3], [0.9, 0.1] )

	# Create transitions from insert states
	model.add_transitions( i0, [i0, d1, m1], [0.7, 0.15, 0.15] )
	model.add_transitions( i1, [i1, d2, m2], [0.7, 0.15, 0.15] )
	model.add_transitions( i2, [i2, d3, m3], [0.7, 0.15, 0.15] )
	model.add_transitions( [i3, i3], [i3, model.end], [0.85, 0.15] )

	# Create transitions from delete states
	model.add_transitions( d1, [d2, i1, m2], [0.15, 0.15, 0.70] )
	model.add_transitions( [d2, d2, d2, d3, d3], [d3, i2, m3, i3, model.end],
		[0.15, 0.15, 0.70, 0.30, 0.70 ] )

	# Call bake to finalize the structure of the model.
	model.bake()
	return model


@pytest.fixture
def tied_edge():
	'''
	Build a model that we want to use to test sequences. This model has
	tied edges.
	'''

	random.seed(0)

	model = HiddenMarkovModel( "Global Alignment")

	# Define the distribution for insertions
	i_d = DiscreteDistribution( { 'A': 0.25, 'C': 0.25, 'G': 0.25, 'T': 0.25 } )

	# Create the insert states
	i0 = State( i_d, name="I0" )
	i1 = State( i_d, name="I1" )
	i2 = State( i_d, name="I2" )
	i3 = State( i_d, name="I3" )

	# Create the match states
	m1 = State( DiscreteDistribution({ "A": 0.95, 'C': 0.01, 'G': 0.01, 'T': 0.02 }) , name="M1" )
	m2 = State( DiscreteDistribution({ "A": 0.003, 'C': 0.99, 'G': 0.003, 'T': 0.004 }) , name="M2" )
	m3 = State( DiscreteDistribution({ "A": 0.01, 'C': 0.01, 'G': 0.01, 'T': 0.97 }) , name="M3" )

	# Create the delete states
	d1 = State( None, name="D1" )
	d2 = State( None, name="D2" )
	d3 = State( None, name="D3" )

	# Add all the states to the model
	model.add_states( [i0, i1, i2, i3, m1, m2, m3, d1, d2, d3 ] )

	# Create transitions from match states
	model.add_transition( model.start, m1, 0.9 )
	model.add_transition( model.start, i0, 0.1 )
	model.add_transition( m1, m2, 0.9 )
	model.add_transition( m1, i1, 0.05 )
	model.add_transition( m1, d2, 0.05 )
	model.add_transition( m2, m3, 0.9 )
	model.add_transition( m2, i2, 0.05 )
	model.add_transition( m2, d3, 0.05 )
	model.add_transition( m3, model.end, 0.9 )
	model.add_transition( m3, i3, 0.1 )

	# Create transitions from insert states
	model.add_transition( i0, i0, 0.70, group="i_a" )
	model.add_transition( i0, d1, 0.15, group="i_b" )
	model.add_transition( i0, m1, 0.15, group="i_c" )

	model.add_transition( i1, i1, 0.70, group="i_a" )
	model.add_transition( i1, d2, 0.15, group="i_b" )
	model.add_transition( i1, m2, 0.15, group="i_c" )

	model.add_transition( i2, i2, 0.70, group="i_a" )
	model.add_transition( i2, d3, 0.15, group="i_b" )
	model.add_transition( i2, m3, 0.15, group="i_c" )

	model.add_transition( i3, i3, 0.85, group="i_a" )
	model.add_transition( i3, model.end, 0.15 )

	# Create transitions from delete states
	model.add_transition( d1, d2, 0.15, group="d_a" )
	model.add_transition( d1, i1, 0.15, group="d_b" )
	model.add_transition( d1, m2, 0.70, group="d_c" )

	model.add_transition( d2, d3, 0.15, group="d_a" )
	model.add_transition( d2, i2, 0.15, group="d_b" )
	model.add_transition( d2, m3, 0.70, group="d_c" )

	model.add_transition( d3, i3, 0.30 )
	model.add_transition( d3, model.end, 0.70 )

	# Call bake to finalize the structure of the model.
	model.bake()
	return model


def test_same_length_viterbi(model):
	scores = [ -0.5132449003570658, -11.048101241343396, -9.125519674022627,
		-5.0879558788604475 ]
	sequences = [ list(x) for x in [ 'ACT', 'GGC', 'GAT', 'ACC' ] ]

	for seq, score in zip( sequences, scores ):
		assert_almost_equal( model.viterbi( seq )[0], score )

	with pytest.raises( ValueError ):
		model.viterbi( list('XXX') )


def test_variable_length_viterbi(model):
	scores = [ -5.406181012423981, -10.88681993576597, -3.6244718790494277,
	-3.644880750680635, -10.674332964640293, -10.393824835172445,
	-8.67126440174503, -16.903451796110275, -16.451699654050792 ]
	sequences = [ list(x) for x in ('A', 'GA', 'AC', 'AT', 'ATCC',
		'ACGTG', 'ATTT', 'TACCCTC', 'TGTCAACACT') ]

	for seq, score in zip( sequences, scores ):
		assert_almost_equal( model.viterbi( seq )[0], score )


def test_log_probability(model):
	scores = [ -5.3931, -0.5052, -11.8478, -14.3482 ]
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]

	for seq, score in zip( sequences, scores ):
		assert round( model.log_probability( seq ), 4 ) == score


def test_posterior_transitions(model):
	a_scores = [ 0.0, 0.0021, 0.2017, 1.5105 ]
	b_scores = [ 0.013, 0.0036, 1.9836, 2.145 ]
	c_scores = [ 0.013, 0.0035, 0.817, 0.477 ]
	d_scores = [ 1.0, 0.0023, 0.2636, 0.3682 ]
	t_scores = [ 4.013, 4.0083, 6.457, 8.9812 ]
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]

	indices = { state.name: i for i, state in enumerate( model.states ) }
	i, j, k, l = indices['I2'], indices['I0'], indices['D1'], indices['D2']

	scores = zip( sequences, a_scores, b_scores, c_scores, d_scores, t_scores )
	for seq, a, b, c, d, t in scores:
		trans, ems = model.forward_backward( seq )

		assert round( trans[i].sum(), 4 ) == a
		assert round( trans[j].sum(), 4 ) == b
		assert round( trans[k].sum(), 4 ) == c
		assert round( trans[l].sum(), 4 ) == d
		assert round( trans.sum(), 4 ) == t


def test_posterior_transitions_w_training(model):
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]
	indices = { state.name: i for i, state in enumerate( model.states ) }

	transitions = model.dense_transition_matrix()
	i0, i1, i2 = indices['I0'], indices['I1'], indices['I2']
	d1, d2, d3 = indices['D1'], indices['D2'], indices['D3']
	m1, m2, m3 = indices['M1'], indices['M2'], indices['M3']

	assert transitions[d1, i1] == transitions[d2, i2]
	assert transitions[i0, i0] == transitions[i1, i1]
	assert transitions[i0, i0] == transitions[i2, i2]
	assert transitions[i0, m1] == transitions[i1, m2]
	assert transitions[d1, d2] == transitions[d2, d3]
	assert transitions[i0, d1] == transitions[i1, d2]
	assert transitions[i0, d1] == transitions[i2, d3]

	model.fit( sequences, verbose=False )
	transitions = model.dense_transition_matrix()

	assert transitions[d1, i1] != transitions[d2, i2]
	assert transitions[i0, m1] != transitions[i1, m2]
	assert transitions[d1, d2] != transitions[d2, d3]
	assert transitions[i0, d1] != transitions[i1, d2]
	assert transitions[i0, d1] != transitions[i2, d3]


def test_posterior_transitions_w_vtraining(model):
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]
	indices = { state.name: i for i, state in enumerate( model.states ) }

	transitions = model.dense_transition_matrix()
	i0, i1, i2, i3 = indices['I0'], indices['I1'], indices['I2'], indices['I3']
	d1, d2, d3 = indices['D1'], indices['D2'], indices['D3']
	m1, m2, m3 = indices['M1'], indices['M2'], indices['M3']

	assert transitions[d1, i1] == transitions[d2, i2]
	assert transitions[i0, i0] == transitions[i1, i1]
	assert transitions[i0, i0] == transitions[i2, i2]
	assert transitions[i0, m1] == transitions[i1, m2]
	assert transitions[d1, d2] == transitions[d2, d3]
	assert transitions[i0, d1] == transitions[i1, d2]
	assert transitions[i0, d1] == transitions[i2, d3]

	model.fit( sequences, verbose=False, algorithm='viterbi' )
	transitions = model.dense_transition_matrix()

	assert transitions[i0, i0] != transitions[i1, i1]
	assert transitions[d1, d2] != transitions[d2, d3]
	assert transitions[i0, d1] != transitions[i1, d2]
	assert transitions[i0, d1] != transitions[i2, d3]


def test_posterior_transitions_w_tied_training(tied_edge):
	model = tied_edge
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]
	indices = { state.name: i for i, state in enumerate( model.states ) }

	transitions = model.dense_transition_matrix()
	i0, i1, i2, i3 = indices['I0'], indices['I1'], indices['I2'], indices['I3']
	d1, d2, d3 = indices['D1'], indices['D2'], indices['D3']
	m1, m2, m3 = indices['M1'], indices['M2'], indices['M3']

	assert transitions[d1, i1] == transitions[d2, i2]
	assert transitions[i0, i0] == transitions[i1, i1]
	assert transitions[i0, i0] == transitions[i2, i2]
	assert transitions[i0, m1] == transitions[i1, m2]
	assert transitions[d1, d2] == transitions[d2, d3]
	assert transitions[i0, d1] == transitions[i1, d2]
	assert transitions[i0, d1] == transitions[i2, d3]

	model.fit( sequences, verbose=False )
	transitions = model.dense_transition_matrix()

	assert transitions[i0, i0] == transitions[i1, i1]
	assert transitions[d1, d2] == transitions[d2, d3]
	assert transitions[i0, d1] == transitions[i1, d2]
	assert transitions[i0, d1] == transitions[i2, d3]


def test_posterior_transitions_w_tied_vtraining(tied_edge):
	model = tied_edge
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]
	indices = { state.name: i for i, state in enumerate( model.states ) }

	transitions = model.dense_transition_matrix()
	i0, i1, i2 = indices['I0'], indices['I1'], indices['I2']
	d1, d2, d3 = indices['D1'], indices['D2'], indices['D3']
	m1, m2, m3 = indices['M1'], indices['M2'], indices['M3']

	assert transitions[d1, i1] == transitions[d2, i2]
	assert transitions[i0, i0] == transitions[i1, i1]
	assert transitions[i0, i0] == transitions[i2, i2]
	assert transitions[i0, m1] == transitions[i1, m2]
	assert transitions[d1, d2] == transitions[d2, d3]
	assert transitions[i0, d1] == transitions[i1, d2]
	assert transitions[i0, d1] == transitions[i2, d3]

	model.fit( sequences, verbose=False, algorithm='viterbi' )
	transitions = model.dense_transition_matrix()

	assert transitions[d1, i1] == transitions[d2, i2]
	assert transitions[i0, i0] == transitions[i1, i1]
	assert transitions[i0, i0] == transitions[i2, i2]
	assert transitions[i0, m1] == transitions[i1, m2]
	assert transitions[d1, d2] == transitions[d2, d3]
	assert transitions[i0, d1] == transitions[i1, d2]
	assert transitions[i0, d1] == transitions[i2, d3]


def test_posterior_emissions(model):
	a_scores = [ 0.987, 0.9965, 0.183, 0.523 ]
	b_scores = [ 0.0, 0.9977, 0.7364, 0.6318 ]
	c_scores = [ 0.0, 0.9975, 0.6237, 0.8641 ]
	d_scores = [ 0.0, 0.0021, 0.2017, 1.5105 ]
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]

	indices = { state.name: i for i, state in enumerate( model.states ) }
	i, j, k, l = indices['M1'], indices['M2'], indices['M3'], indices['I2']

	for seq, a, b, c, d in zip( sequences, a_scores, b_scores, c_scores, d_scores ):
		trans, ems = model.forward_backward( seq )
		ems = np.exp( ems )

		assert round( ems[:,i].sum(), 4 ) == a
		assert round( ems[:,j].sum(), 4 ) == b
		assert round( ems[:,k].sum(), 4 ) == c
		assert round( ems[:,l].sum(), 4 ) == d
		assert round( ems.sum() ) == len( seq )


def test_posterior_emissions_w_multitransition_setup(multitransition):
	model = multitransition
	a_scores = [ 0.987, 0.9965, 0.183, 0.523 ]
	b_scores = [ 0.0, 0.9977, 0.7364, 0.6318 ]
	c_scores = [ 0.0, 0.9975, 0.6237, 0.8641 ]
	d_scores = [ 0.0, 0.0021, 0.2017, 1.5105 ]
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]

	indices = { state.name: i for i, state in enumerate( model.states ) }
	i, j, k, l = indices['M1'], indices['M2'], indices['M3'], indices['I2']

	for seq, a, b, c, d in zip( sequences, a_scores, b_scores, c_scores, d_scores ):
		trans, ems = model.forward_backward( seq )
		ems = np.exp( ems )

		assert round( ems[:,i].sum(), 4 ) == a
		assert round( ems[:,j].sum(), 4 ) == b
		assert round( ems[:,k].sum(), 4 ) == c
		assert round( ems[:,l].sum(), 4 ) == d
		assert round( ems.sum() ) == len( seq )


def test_posterior_emissions_w_tied_edge_setup(tied_edge):
	model = tied_edge
	a_scores = [ 0.987, 0.9965, 0.183, 0.523 ]
	b_scores = [ 0.0, 0.9977, 0.7364, 0.6318 ]
	c_scores = [ 0.0, 0.9975, 0.6237, 0.8641 ]
	d_scores = [ 0.0, 0.0021, 0.2017, 1.5105 ]
	sequences = [ list(x) for x in ( 'A', 'ACT', 'GGCA', 'TACCTGT' ) ]

	indices = { state.name: i for i, state in enumerate( model.states ) }
	i, j, k, l = indices['M1'], indices['M2'], indices['M3'], indices['I2']

	for seq, a, b, c, d in zip( sequences, a_scores, b_scores, c_scores, d_scores ):
		trans, ems = model.forward_backward( seq )
		ems = np.exp( ems )

		assert round( ems[:,i].sum(), 4 ) == a
		assert round( ems[:,j].sum(), 4 ) == b
		assert round( ems[:,k].sum(), 4 ) == c
		assert round( ems[:,l].sum(), 4 ) == d
		assert round( ems.sum() ) == len( seq )


def test_properties(model):
	assert model.edge_count() == 29
	assert model.state_count() == 12
	assert model.name == "Global Alignment"


def test_to_json(model):
	b = json.loads(model.to_json())

	assert b['name'] == 'Global Alignment'
	assert len(b['edges']) == 29
	assert len(b['states']) == 12
	assert b['silent_index'] == 7


def test_from_json(model):
	hmm = HiddenMarkovModel.from_json( model.to_json() )

	assert hmm.edge_count() == 29
	assert hmm.state_count() == 12
	assert hmm.name == "Global Alignment"