1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
# -*- coding: utf-8 -*-
"""
Partial OT solvers
"""
# Author: Laetitia Chapel <laetitia.chapel@irisa.fr>
# License: MIT License
import numpy as np
from .lp import emd
def partial_wasserstein_lagrange(a, b, M, reg_m=None, nb_dummies=1, log=False,
**kwargs):
r"""
Solves the partial optimal transport problem for the quadratic cost
and returns the OT plan
The function considers the following problem:
.. math::
\gamma = \arg\min_\gamma <\gamma,(M-\lambda)>_F
s.t.
\gamma\geq 0 \\
\gamma 1 \leq a\\
\gamma^T 1 \leq b\\
1^T \gamma^T 1 = m \leq \min\{\|a\|_1, \|b\|_1\}
or equivalently (see Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X.
(2018). An interpolating distance between optimal transport and Fisher–Rao
metrics. Foundations of Computational Mathematics, 18(1), 1-44.)
.. math::
\gamma = \arg\min_\gamma <\gamma,M>_F + \sqrt(\lambda/2)
(\|\gamma 1 - a\|_1 + \|\gamma^T 1 - b\|_1)
s.t.
\gamma\geq 0 \\
where :
- M is the metric cost matrix
- a and b are source and target unbalanced distributions
- :math:`\lambda` is the lagragian cost. Tuning its value allows attaining
a given mass to be transported m
The formulation of the problem has been proposed in [28]_
Parameters
----------
a : np.ndarray (dim_a,)
Unnormalized histogram of dimension dim_a
b : np.ndarray (dim_b,)
Unnormalized histograms of dimension dim_b
M : np.ndarray (dim_a, dim_b)
cost matrix for the quadratic cost
reg_m : float, optional
Lagragian cost
nb_dummies : int, optional, default:1
number of reservoir points to be added (to avoid numerical
instabilities, increase its value if an error is raised)
log : bool, optional
record log if True
**kwargs : dict
parameters can be directly passed to the emd solver
.. warning::
When dealing with a large number of points, the EMD solver may face
some instabilities, especially when the mass associated to the dummy
point is large. To avoid them, increase the number of dummy points
(allows a smoother repartition of the mass over the points).
Returns
-------
gamma : (dim_a x dim_b) ndarray
Optimal transportation matrix for the given parameters
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> a = [.1, .2]
>>> b = [.1, .1]
>>> M = [[0., 1.], [2., 3.]]
>>> np.round(partial_wasserstein_lagrange(a,b,M), 2)
array([[0.1, 0. ],
[0. , 0.1]])
>>> np.round(partial_wasserstein_lagrange(a,b,M,reg_m=2), 2)
array([[0.1, 0. ],
[0. , 0. ]])
References
----------
.. [28] Caffarelli, L. A., & McCann, R. J. (2010) Free boundaries in
optimal transport and Monge-Ampere obstacle problems. Annals of
mathematics, 673-730.
See Also
--------
ot.partial.partial_wasserstein : Partial Wasserstein with fixed mass
"""
if np.sum(a) > 1 or np.sum(b) > 1:
raise ValueError("Problem infeasible. Check that a and b are in the "
"simplex")
if reg_m is None:
reg_m = np.max(M) + 1
if reg_m < -np.max(M):
return np.zeros((len(a), len(b)))
eps = 1e-20
M = np.asarray(M, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
a = np.asarray(a, dtype=np.float64)
M_star = M - reg_m # modified cost matrix
# trick to fasten the computation: select only the subset of columns/lines
# that can have marginals greater than 0 (that is to say M < 0)
idx_x = np.where(np.min(M_star, axis=1) < eps)[0]
idx_y = np.where(np.min(M_star, axis=0) < eps)[0]
# extend a, b, M with "reservoir" or "dummy" points
M_extended = np.zeros((len(idx_x) + nb_dummies, len(idx_y) + nb_dummies))
M_extended[:len(idx_x), :len(idx_y)] = M_star[np.ix_(idx_x, idx_y)]
a_extended = np.append(a[idx_x], [(np.sum(a) - np.sum(a[idx_x]) +
np.sum(b)) / nb_dummies] * nb_dummies)
b_extended = np.append(b[idx_y], [(np.sum(b) - np.sum(b[idx_y]) +
np.sum(a)) / nb_dummies] * nb_dummies)
gamma_extended, log_emd = emd(a_extended, b_extended, M_extended, log=True,
**kwargs)
gamma = np.zeros((len(a), len(b)))
gamma[np.ix_(idx_x, idx_y)] = gamma_extended[:-nb_dummies, :-nb_dummies]
if log_emd['warning'] is not None:
raise ValueError("Error in the EMD resolution: try to increase the"
" number of dummy points")
log_emd['cost'] = np.sum(gamma * M)
if log:
return gamma, log_emd
else:
return gamma
def partial_wasserstein(a, b, M, m=None, nb_dummies=1, log=False, **kwargs):
r"""
Solves the partial optimal transport problem for the quadratic cost
and returns the OT plan
The function considers the following problem:
.. math::
\gamma = \arg\min_\gamma <\gamma,M>_F
s.t.
\gamma\geq 0 \\
\gamma 1 \leq a\\
\gamma^T 1 \leq b\\
1^T \gamma^T 1 = m \leq \min\{\|a\|_1, \|b\|_1\}
where :
- M is the metric cost matrix
- a and b are source and target unbalanced distributions
- m is the amount of mass to be transported
Parameters
----------
a : np.ndarray (dim_a,)
Unnormalized histogram of dimension dim_a
b : np.ndarray (dim_b,)
Unnormalized histograms of dimension dim_b
M : np.ndarray (dim_a, dim_b)
cost matrix for the quadratic cost
m : float, optional
amount of mass to be transported
nb_dummies : int, optional, default:1
number of reservoir points to be added (to avoid numerical
instabilities, increase its value if an error is raised)
log : bool, optional
record log if True
**kwargs : dict
parameters can be directly passed to the emd solver
.. warning::
When dealing with a large number of points, the EMD solver may face
some instabilities, especially when the mass associated to the dummy
point is large. To avoid them, increase the number of dummy points
(allows a smoother repartition of the mass over the points).
Returns
-------
:math:`gamma` : (dim_a x dim_b) ndarray
Optimal transportation matrix for the given parameters
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> a = [.1, .2]
>>> b = [.1, .1]
>>> M = [[0., 1.], [2., 3.]]
>>> np.round(partial_wasserstein(a,b,M), 2)
array([[0.1, 0. ],
[0. , 0.1]])
>>> np.round(partial_wasserstein(a,b,M,m=0.1), 2)
array([[0.1, 0. ],
[0. , 0. ]])
References
----------
.. [28] Caffarelli, L. A., & McCann, R. J. (2010) Free boundaries in
optimal transport and Monge-Ampere obstacle problems. Annals of
mathematics, 673-730.
.. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
Wasserstein with Applications on Positive-Unlabeled Learning".
arXiv preprint arXiv:2002.08276.
See Also
--------
ot.partial.partial_wasserstein_lagrange: Partial Wasserstein with
regularization on the marginals
ot.partial.entropic_partial_wasserstein: Partial Wasserstein with a
entropic regularization parameter
"""
if m is None:
return partial_wasserstein_lagrange(a, b, M, log=log, **kwargs)
elif m < 0:
raise ValueError("Problem infeasible. Parameter m should be greater"
" than 0.")
elif m > np.min((np.sum(a), np.sum(b))):
raise ValueError("Problem infeasible. Parameter m should lower or"
" equal than min(|a|_1, |b|_1).")
b_extended = np.append(b, [(np.sum(a) - m) / nb_dummies] * nb_dummies)
a_extended = np.append(a, [(np.sum(b) - m) / nb_dummies] * nb_dummies)
M_extended = np.zeros((len(a_extended), len(b_extended)))
M_extended[-1, -1] = np.max(M) * 1e5
M_extended[:len(a), :len(b)] = M
gamma, log_emd = emd(a_extended, b_extended, M_extended, log=True,
**kwargs)
if log_emd['warning'] is not None:
raise ValueError("Error in the EMD resolution: try to increase the"
" number of dummy points")
log_emd['partial_w_dist'] = np.sum(M * gamma[:len(a), :len(b)])
if log:
return gamma[:len(a), :len(b)], log_emd
else:
return gamma[:len(a), :len(b)]
def partial_wasserstein2(a, b, M, m=None, nb_dummies=1, log=False, **kwargs):
r"""
Solves the partial optimal transport problem for the quadratic cost
and returns the partial GW discrepancy
The function considers the following problem:
.. math::
\gamma = \arg\min_\gamma <\gamma,M>_F
s.t.
\gamma\geq 0 \\
\gamma 1 \leq a\\
\gamma^T 1 \leq b\\
1^T \gamma^T 1 = m \leq \min\{\|a\|_1, \|b\|_1\}
where :
- M is the metric cost matrix
- a and b are source and target unbalanced distributions
- m is the amount of mass to be transported
Parameters
----------
a : np.ndarray (dim_a,)
Unnormalized histogram of dimension dim_a
b : np.ndarray (dim_b,)
Unnormalized histograms of dimension dim_b
M : np.ndarray (dim_a, dim_b)
cost matrix for the quadratic cost
m : float, optional
amount of mass to be transported
nb_dummies : int, optional, default:1
number of reservoir points to be added (to avoid numerical
instabilities, increase its value if an error is raised)
log : bool, optional
record log if True
**kwargs : dict
parameters can be directly passed to the emd solver
.. warning::
When dealing with a large number of points, the EMD solver may face
some instabilities, especially when the mass associated to the dummy
point is large. To avoid them, increase the number of dummy points
(allows a smoother repartition of the mass over the points).
Returns
-------
:math:`gamma` : (dim_a x dim_b) ndarray
Optimal transportation matrix for the given parameters
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> a=[.1, .2]
>>> b=[.1, .1]
>>> M=[[0., 1.], [2., 3.]]
>>> np.round(partial_wasserstein2(a, b, M), 1)
0.3
>>> np.round(partial_wasserstein2(a,b,M,m=0.1), 1)
0.0
References
----------
.. [28] Caffarelli, L. A., & McCann, R. J. (2010) Free boundaries in
optimal transport and Monge-Ampere obstacle problems. Annals of
mathematics, 673-730.
.. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
Wasserstein with Applications on Positive-Unlabeled Learning".
arXiv preprint arXiv:2002.08276.
"""
partial_gw, log_w = partial_wasserstein(a, b, M, m, nb_dummies, log=True,
**kwargs)
log_w['T'] = partial_gw
if log:
return np.sum(partial_gw * M), log_w
else:
return np.sum(partial_gw * M)
def gwgrad_partial(C1, C2, T):
"""Compute the GW gradient. Note: we can not use the trick in [12]_ as
the marginals may not sum to 1.
Parameters
----------
C1: array of shape (n_p,n_p)
intra-source (P) cost matrix
C2: array of shape (n_u,n_u)
intra-target (U) cost matrix
T : array of shape(n_p+nb_dummies, n_u) (default: None)
Transport matrix
Returns
-------
numpy.array of shape (n_p+nb_dummies, n_u)
gradient
References
----------
.. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon,
"Gromov-Wasserstein averaging of kernel and distance matrices."
International Conference on Machine Learning (ICML). 2016.
"""
cC1 = np.dot(C1 ** 2 / 2, np.dot(T, np.ones(C2.shape[0]).reshape(-1, 1)))
cC2 = np.dot(np.dot(np.ones(C1.shape[0]).reshape(1, -1), T), C2 ** 2 / 2)
constC = cC1 + cC2
A = -np.dot(C1, T).dot(C2.T)
tens = constC + A
return tens * 2
def gwloss_partial(C1, C2, T):
"""Compute the GW loss.
Parameters
----------
C1: array of shape (n_p,n_p)
intra-source (P) cost matrix
C2: array of shape (n_u,n_u)
intra-target (U) cost matrix
T : array of shape(n_p+nb_dummies, n_u) (default: None)
Transport matrix
Returns
-------
GW loss
"""
g = gwgrad_partial(C1, C2, T) * 0.5
return np.sum(g * T)
def partial_gromov_wasserstein(C1, C2, p, q, m=None, nb_dummies=1, G0=None,
thres=1, numItermax=1000, tol=1e-7,
log=False, verbose=False, **kwargs):
r"""
Solves the partial optimal transport problem
and returns the OT plan
The function considers the following problem:
.. math::
\gamma = arg\min_\gamma <\gamma,M>_F
s.t. \gamma 1 \leq a \\
\gamma^T 1 \leq b \\
\gamma\geq 0 \\
1^T \gamma^T 1 = m \leq \min\{\|a\|_1, \|b\|_1\} \\
where :
- M is the metric cost matrix
- :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)
=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- a and b are the sample weights
- m is the amount of mass to be transported
The formulation of the problem has been proposed in [29]_
Parameters
----------
C1 : ndarray, shape (ns, ns)
Metric cost matrix in the source space
C2 : ndarray, shape (nt, nt)
Metric costfr matrix in the target space
p : ndarray, shape (ns,)
Distribution in the source space
q : ndarray, shape (nt,)
Distribution in the target space
m : float, optional
Amount of mass to be transported (default: min (|p|_1, |q|_1))
nb_dummies : int, optional
Number of dummy points to add (avoid instabilities in the EMD solver)
G0 : ndarray, shape (ns, nt), optional
Initialisation of the transportation matrix
thres : float, optional
quantile of the gradient matrix to populate the cost matrix when 0
(default: 1)
numItermax : int, optional
Max number of iterations
tol : float, optional
tolerance for stopping iterations
log : bool, optional
return log if True
verbose : bool, optional
Print information along iterations
**kwargs : dict
parameters can be directly passed to the emd solver
Returns
-------
gamma : (dim_a x dim_b) ndarray
Optimal transportation matrix for the given parameters
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> import scipy as sp
>>> a = np.array([0.25] * 4)
>>> b = np.array([0.25] * 4)
>>> x = np.array([1,2,100,200]).reshape((-1,1))
>>> y = np.array([3,2,98,199]).reshape((-1,1))
>>> C1 = sp.spatial.distance.cdist(x, x)
>>> C2 = sp.spatial.distance.cdist(y, y)
>>> np.round(partial_gromov_wasserstein(C1, C2, a, b),2)
array([[0. , 0.25, 0. , 0. ],
[0.25, 0. , 0. , 0. ],
[0. , 0. , 0.25, 0. ],
[0. , 0. , 0. , 0.25]])
>>> np.round(partial_gromov_wasserstein(C1, C2, a, b, m=0.25),2)
array([[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0.25]])
References
----------
.. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
Wasserstein with Applications on Positive-Unlabeled Learning".
arXiv preprint arXiv:2002.08276.
"""
if m is None:
m = np.min((np.sum(p), np.sum(q)))
elif m < 0:
raise ValueError("Problem infeasible. Parameter m should be greater"
" than 0.")
elif m > np.min((np.sum(p), np.sum(q))):
raise ValueError("Problem infeasible. Parameter m should lower or"
" equal than min(|a|_1, |b|_1).")
if G0 is None:
G0 = np.outer(p, q)
dim_G_extended = (len(p) + nb_dummies, len(q) + nb_dummies)
q_extended = np.append(q, [(np.sum(p) - m) / nb_dummies] * nb_dummies)
p_extended = np.append(p, [(np.sum(q) - m) / nb_dummies] * nb_dummies)
cpt = 0
err = 1
eps = 1e-20
if log:
log = {'err': []}
while (err > tol and cpt < numItermax):
Gprev = G0
M = gwgrad_partial(C1, C2, G0)
M[M < eps] = np.quantile(M, thres)
M_emd = np.zeros(dim_G_extended)
M_emd[:len(p), :len(q)] = M
M_emd[-nb_dummies:, -nb_dummies:] = np.max(M) * 1e5
M_emd = np.asarray(M_emd, dtype=np.float64)
Gc, logemd = emd(p_extended, q_extended, M_emd, log=True, **kwargs)
if logemd['warning'] is not None:
raise ValueError("Error in the EMD resolution: try to increase the"
" number of dummy points")
G0 = Gc[:len(p), :len(q)]
if cpt % 10 == 0: # to speed up the computations
err = np.linalg.norm(G0 - Gprev)
if log:
log['err'].append(err)
if verbose:
if cpt % 200 == 0:
print('{:5s}|{:12s}|{:12s}'.format(
'It.', 'Err', 'Loss') + '\n' + '-' * 31)
print('{:5d}|{:8e}|{:8e}'.format(cpt, err,
gwloss_partial(C1, C2, G0)))
cpt += 1
if log:
log['partial_gw_dist'] = gwloss_partial(C1, C2, G0)
return G0[:len(p), :len(q)], log
else:
return G0[:len(p), :len(q)]
def partial_gromov_wasserstein2(C1, C2, p, q, m=None, nb_dummies=1, G0=None,
thres=1, numItermax=1000, tol=1e-7,
log=False, verbose=False, **kwargs):
r"""
Solves the partial optimal transport problem
and returns the partial Gromov-Wasserstein discrepancy
The function considers the following problem:
.. math::
\gamma = arg\min_\gamma <\gamma,M>_F
s.t. \gamma 1 \leq a \\
\gamma^T 1 \leq b \\
\gamma\geq 0 \\
1^T \gamma^T 1 = m \leq \min\{\|a\|_1, \|b\|_1\} \\
where :
- M is the metric cost matrix
- :math:`\Omega` is the entropic regularization term
:math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- a and b are the sample weights
- m is the amount of mass to be transported
The formulation of the problem has been proposed in [29]_
Parameters
----------
C1 : ndarray, shape (ns, ns)
Metric cost matrix in the source space
C2 : ndarray, shape (nt, nt)
Metric costfr matrix in the target space
p : ndarray, shape (ns,)
Distribution in the source space
q : ndarray, shape (nt,)
Distribution in the target space
m : float, optional
Amount of mass to be transported (default: min (|p|_1, |q|_1))
nb_dummies : int, optional
Number of dummy points to add (avoid instabilities in the EMD solver)
G0 : ndarray, shape (ns, nt), optional
Initialisation of the transportation matrix
thres : float, optional
quantile of the gradient matrix to populate the cost matrix when 0
(default: 1)
numItermax : int, optional
Max number of iterations
tol : float, optional
tolerance for stopping iterations
log : bool, optional
return log if True
verbose : bool, optional
Print information along iterations
**kwargs : dict
parameters can be directly passed to the emd solver
.. warning::
When dealing with a large number of points, the EMD solver may face
some instabilities, especially when the mass associated to the dummy
point is large. To avoid them, increase the number of dummy points
(allows a smoother repartition of the mass over the points).
Returns
-------
partial_gw_dist : (dim_a x dim_b) ndarray
partial GW discrepancy
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> import scipy as sp
>>> a = np.array([0.25] * 4)
>>> b = np.array([0.25] * 4)
>>> x = np.array([1,2,100,200]).reshape((-1,1))
>>> y = np.array([3,2,98,199]).reshape((-1,1))
>>> C1 = sp.spatial.distance.cdist(x, x)
>>> C2 = sp.spatial.distance.cdist(y, y)
>>> np.round(partial_gromov_wasserstein2(C1, C2, a, b),2)
1.69
>>> np.round(partial_gromov_wasserstein2(C1, C2, a, b, m=0.25),2)
0.0
References
----------
.. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
Wasserstein with Applications on Positive-Unlabeled Learning".
arXiv preprint arXiv:2002.08276.
"""
partial_gw, log_gw = partial_gromov_wasserstein(C1, C2, p, q, m,
nb_dummies, G0, thres,
numItermax, tol, True,
verbose, **kwargs)
log_gw['T'] = partial_gw
if log:
return log_gw['partial_gw_dist'], log_gw
else:
return log_gw['partial_gw_dist']
def entropic_partial_wasserstein(a, b, M, reg, m=None, numItermax=1000,
stopThr=1e-100, verbose=False, log=False):
r"""
Solves the partial optimal transport problem
and returns the OT plan
The function considers the following problem:
.. math::
\gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
s.t. \gamma 1 \leq a \\
\gamma^T 1 \leq b \\
\gamma\geq 0 \\
1^T \gamma^T 1 = m \leq \min\{\|a\|_1, \|b\|_1\} \\
where :
- M is the metric cost matrix
- :math:`\Omega` is the entropic regularization term
:math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- a and b are the sample weights
- m is the amount of mass to be transported
The formulation of the problem has been proposed in [3]_ (prop. 5)
Parameters
----------
a : np.ndarray (dim_a,)
Unnormalized histogram of dimension dim_a
b : np.ndarray (dim_b,)
Unnormalized histograms of dimension dim_b
M : np.ndarray (dim_a, dim_b)
cost matrix
reg : float
Regularization term > 0
m : float, optional
Amount of mass to be transported
numItermax : int, optional
Max number of iterations
stopThr : float, optional
Stop threshold on error (>0)
verbose : bool, optional
Print information along iterations
log : bool, optional
record log if True
Returns
-------
gamma : (dim_a x dim_b) ndarray
Optimal transportation matrix for the given parameters
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> a = [.1, .2]
>>> b = [.1, .1]
>>> M = [[0., 1.], [2., 3.]]
>>> np.round(entropic_partial_wasserstein(a, b, M, 1, 0.1), 2)
array([[0.06, 0.02],
[0.01, 0. ]])
References
----------
.. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G.
(2015). Iterative Bregman projections for regularized transportation
problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
See Also
--------
ot.partial.partial_wasserstein: exact Partial Wasserstein
"""
a = np.asarray(a, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
M = np.asarray(M, dtype=np.float64)
dim_a, dim_b = M.shape
dx = np.ones(dim_a, dtype=np.float64)
dy = np.ones(dim_b, dtype=np.float64)
if len(a) == 0:
a = np.ones(dim_a, dtype=np.float64) / dim_a
if len(b) == 0:
b = np.ones(dim_b, dtype=np.float64) / dim_b
if m is None:
m = np.min((np.sum(a), np.sum(b))) * 1.0
if m < 0:
raise ValueError("Problem infeasible. Parameter m should be greater"
" than 0.")
if m > np.min((np.sum(a), np.sum(b))):
raise ValueError("Problem infeasible. Parameter m should lower or"
" equal than min(|a|_1, |b|_1).")
log_e = {'err': []}
# Next 3 lines equivalent to K=np.exp(-M/reg), but faster to compute
K = np.empty(M.shape, dtype=M.dtype)
np.divide(M, -reg, out=K)
np.exp(K, out=K)
np.multiply(K, m / np.sum(K), out=K)
err, cpt = 1, 0
while (err > stopThr and cpt < numItermax):
Kprev = K
K1 = np.dot(np.diag(np.minimum(a / np.sum(K, axis=1), dx)), K)
K2 = np.dot(K1, np.diag(np.minimum(b / np.sum(K1, axis=0), dy)))
K = K2 * (m / np.sum(K2))
if np.any(np.isnan(K)) or np.any(np.isinf(K)):
print('Warning: numerical errors at iteration', cpt)
break
if cpt % 10 == 0:
err = np.linalg.norm(Kprev - K)
if log:
log_e['err'].append(err)
if verbose:
if cpt % 200 == 0:
print(
'{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 11)
print('{:5d}|{:8e}|'.format(cpt, err))
cpt = cpt + 1
log_e['partial_w_dist'] = np.sum(M * K)
if log:
return K, log_e
else:
return K
def entropic_partial_gromov_wasserstein(C1, C2, p, q, reg, m=None, G0=None,
numItermax=1000, tol=1e-7, log=False,
verbose=False):
r"""
Returns the partial Gromov-Wasserstein transport between (C1,p) and (C2,q)
The function solves the following optimization problem:
.. math::
GW = \arg\min_{\gamma} \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})\cdot
\gamma_{i,j}\cdot\gamma_{k,l} + reg\cdot\Omega(\gamma)
s.t.
\gamma\geq 0 \\
\gamma 1 \leq a\\
\gamma^T 1 \leq b\\
1^T \gamma^T 1 = m \leq \min\{\|a\|_1, \|b\|_1\}
where :
- C1 is the metric cost matrix in the source space
- C2 is the metric cost matrix in the target space
- p and q are the sample weights
- L : quadratic loss function
- :math:`\Omega` is the entropic regularization term
:math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- m is the amount of mass to be transported
The formulation of the GW problem has been proposed in [12]_ and the
partial GW in [29]_.
Parameters
----------
C1 : ndarray, shape (ns, ns)
Metric cost matrix in the source space
C2 : ndarray, shape (nt, nt)
Metric costfr matrix in the target space
p : ndarray, shape (ns,)
Distribution in the source space
q : ndarray, shape (nt,)
Distribution in the target space
reg: float
entropic regularization parameter
m : float, optional
Amount of mass to be transported (default: min (|p|_1, |q|_1))
G0 : ndarray, shape (ns, nt), optional
Initialisation of the transportation matrix
numItermax : int, optional
Max number of iterations
tol : float, optional
Stop threshold on error (>0)
log : bool, optional
return log if True
verbose : bool, optional
Print information along iterations
Examples
--------
>>> import ot
>>> import scipy as sp
>>> a = np.array([0.25] * 4)
>>> b = np.array([0.25] * 4)
>>> x = np.array([1,2,100,200]).reshape((-1,1))
>>> y = np.array([3,2,98,199]).reshape((-1,1))
>>> C1 = sp.spatial.distance.cdist(x, x)
>>> C2 = sp.spatial.distance.cdist(y, y)
>>> np.round(entropic_partial_gromov_wasserstein(C1, C2, a, b,50), 2)
array([[0.12, 0.13, 0. , 0. ],
[0.13, 0.12, 0. , 0. ],
[0. , 0. , 0.25, 0. ],
[0. , 0. , 0. , 0.25]])
>>> np.round(entropic_partial_gromov_wasserstein(C1, C2, a, b, 50, m=0.25), 2)
array([[0.02, 0.03, 0. , 0.03],
[0.03, 0.03, 0. , 0.03],
[0. , 0. , 0.03, 0. ],
[0.02, 0.02, 0. , 0.03]])
Returns
-------
:math: `gamma` : (dim_a x dim_b) ndarray
Optimal transportation matrix for the given parameters
log : dict
log dictionary returned only if `log` is `True`
References
----------
.. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon,
"Gromov-Wasserstein averaging of kernel and distance matrices."
International Conference on Machine Learning (ICML). 2016.
.. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
Wasserstein with Applications on Positive-Unlabeled Learning".
arXiv preprint arXiv:2002.08276.
See Also
--------
ot.partial.partial_gromov_wasserstein: exact Partial Gromov-Wasserstein
"""
if G0 is None:
G0 = np.outer(p, q)
if m is None:
m = np.min((np.sum(p), np.sum(q)))
elif m < 0:
raise ValueError("Problem infeasible. Parameter m should be greater"
" than 0.")
elif m > np.min((np.sum(p), np.sum(q))):
raise ValueError("Problem infeasible. Parameter m should lower or"
" equal than min(|a|_1, |b|_1).")
cpt = 0
err = 1
loge = {'err': []}
while (err > tol and cpt < numItermax):
Gprev = G0
M_entr = gwgrad_partial(C1, C2, G0)
G0 = entropic_partial_wasserstein(p, q, M_entr, reg, m)
if cpt % 10 == 0: # to speed up the computations
err = np.linalg.norm(G0 - Gprev)
if log:
loge['err'].append(err)
if verbose:
if cpt % 200 == 0:
print('{:5s}|{:12s}|{:12s}'.format(
'It.', 'Err', 'Loss') + '\n' + '-' * 31)
print('{:5d}|{:8e}|{:8e}'.format(cpt, err,
gwloss_partial(C1, C2, G0)))
cpt += 1
if log:
loge['partial_gw_dist'] = gwloss_partial(C1, C2, G0)
return G0, loge
else:
return G0
def entropic_partial_gromov_wasserstein2(C1, C2, p, q, reg, m=None, G0=None,
numItermax=1000, tol=1e-7, log=False,
verbose=False):
r"""
Returns the partial Gromov-Wasserstein discrepancy between (C1,p) and
(C2,q)
The function solves the following optimization problem:
.. math::
GW = \arg\min_{\gamma} \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})\cdot
\gamma_{i,j}\cdot\gamma_{k,l} + reg\cdot\Omega(\gamma)
s.t.
\gamma\geq 0 \\
\gamma 1 \leq a\\
\gamma^T 1 \leq b\\
1^T \gamma^T 1 = m \leq \min\{\|a\|_1, \|b\|_1\}
where :
- C1 is the metric cost matrix in the source space
- C2 is the metric cost matrix in the target space
- p and q are the sample weights
- L : quadratic loss function
- :math:`\Omega` is the entropic regularization term
:math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- m is the amount of mass to be transported
The formulation of the GW problem has been proposed in [12]_ and the
partial GW in [29]_.
Parameters
----------
C1 : ndarray, shape (ns, ns)
Metric cost matrix in the source space
C2 : ndarray, shape (nt, nt)
Metric costfr matrix in the target space
p : ndarray, shape (ns,)
Distribution in the source space
q : ndarray, shape (nt,)
Distribution in the target space
reg: float
entropic regularization parameter
m : float, optional
Amount of mass to be transported (default: min (|p|_1, |q|_1))
G0 : ndarray, shape (ns, nt), optional
Initialisation of the transportation matrix
numItermax : int, optional
Max number of iterations
tol : float, optional
Stop threshold on error (>0)
log : bool, optional
return log if True
verbose : bool, optional
Print information along iterations
Returns
-------
partial_gw_dist: float
Gromov-Wasserstein distance
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> import scipy as sp
>>> a = np.array([0.25] * 4)
>>> b = np.array([0.25] * 4)
>>> x = np.array([1,2,100,200]).reshape((-1,1))
>>> y = np.array([3,2,98,199]).reshape((-1,1))
>>> C1 = sp.spatial.distance.cdist(x, x)
>>> C2 = sp.spatial.distance.cdist(y, y)
>>> np.round(entropic_partial_gromov_wasserstein2(C1, C2, a, b,50), 2)
1.87
References
----------
.. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon,
"Gromov-Wasserstein averaging of kernel and distance matrices."
International Conference on Machine Learning (ICML). 2016.
.. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
Wasserstein with Applications on Positive-Unlabeled Learning".
arXiv preprint arXiv:2002.08276.
"""
partial_gw, log_gw = entropic_partial_gromov_wasserstein(C1, C2, p, q, reg,
m, G0, numItermax,
tol, True,
verbose)
log_gw['T'] = partial_gw
if log:
return log_gw['partial_gw_dist'], log_gw
else:
return log_gw['partial_gw_dist']
|