1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
# -*- coding: utf-8 -*-
"""
Various useful functions
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
import multiprocessing
from functools import reduce
import time
import numpy as np
from scipy.spatial.distance import cdist
import sys
import warnings
try:
from inspect import signature
except ImportError:
from .externals.funcsigs import signature
__time_tic_toc = time.time()
def tic():
""" Python implementation of Matlab tic() function """
global __time_tic_toc
__time_tic_toc = time.time()
def toc(message='Elapsed time : {} s'):
""" Python implementation of Matlab toc() function """
t = time.time()
print(message.format(t - __time_tic_toc))
return t - __time_tic_toc
def toq():
""" Python implementation of Julia toc() function """
t = time.time()
return t - __time_tic_toc
def kernel(x1, x2, method='gaussian', sigma=1, **kwargs):
"""Compute kernel matrix"""
if method.lower() in ['gaussian', 'gauss', 'rbf']:
K = np.exp(-dist(x1, x2) / (2 * sigma**2))
return K
def laplacian(x):
"""Compute Laplacian matrix"""
L = np.diag(np.sum(x, axis=0)) - x
return L
def unif(n):
""" return a uniform histogram of length n (simplex)
Parameters
----------
n : int
number of bins in the histogram
Returns
-------
h : np.array (n,)
histogram of length n such that h_i=1/n for all i
"""
return np.ones((n,)) / n
def clean_zeros(a, b, M):
""" Remove all components with zeros weights in a and b
"""
M2 = M[a > 0, :][:, b > 0].copy() # copy force c style matrix (froemd)
a2 = a[a > 0]
b2 = b[b > 0]
return a2, b2, M2
def euclidean_distances(X, Y, squared=False):
"""
Considering the rows of X (and Y=X) as vectors, compute the
distance matrix between each pair of vectors.
Parameters
----------
X : {array-like}, shape (n_samples_1, n_features)
Y : {array-like}, shape (n_samples_2, n_features)
squared : boolean, optional
Return squared Euclidean distances.
Returns
-------
distances : {array}, shape (n_samples_1, n_samples_2)
"""
XX = np.einsum('ij,ij->i', X, X)[:, np.newaxis]
YY = np.einsum('ij,ij->i', Y, Y)[np.newaxis, :]
distances = np.dot(X, Y.T)
distances *= -2
distances += XX
distances += YY
np.maximum(distances, 0, out=distances)
if X is Y:
# Ensure that distances between vectors and themselves are set to 0.0.
# This may not be the case due to floating point rounding errors.
distances.flat[::distances.shape[0] + 1] = 0.0
return distances if squared else np.sqrt(distances, out=distances)
def dist(x1, x2=None, metric='sqeuclidean'):
"""Compute distance between samples in x1 and x2 using function scipy.spatial.distance.cdist
Parameters
----------
x1 : ndarray, shape (n1,d)
matrix with n1 samples of size d
x2 : array, shape (n2,d), optional
matrix with n2 samples of size d (if None then x2=x1)
metric : str | callable, optional
Name of the metric to be computed (full list in the doc of scipy), If a string,
the distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'.
Returns
-------
M : np.array (n1,n2)
distance matrix computed with given metric
"""
if x2 is None:
x2 = x1
if metric == "sqeuclidean":
return euclidean_distances(x1, x2, squared=True)
return cdist(x1, x2, metric=metric)
def dist0(n, method='lin_square'):
"""Compute standard cost matrices of size (n, n) for OT problems
Parameters
----------
n : int
Size of the cost matrix.
method : str, optional
Type of loss matrix chosen from:
* 'lin_square' : linear sampling between 0 and n-1, quadratic loss
Returns
-------
M : ndarray, shape (n1,n2)
Distance matrix computed with given metric.
"""
res = 0
if method == 'lin_square':
x = np.arange(n, dtype=np.float64).reshape((n, 1))
res = dist(x, x)
return res
def cost_normalization(C, norm=None):
""" Apply normalization to the loss matrix
Parameters
----------
C : ndarray, shape (n1, n2)
The cost matrix to normalize.
norm : str
Type of normalization from 'median', 'max', 'log', 'loglog'. Any
other value do not normalize.
Returns
-------
C : ndarray, shape (n1, n2)
The input cost matrix normalized according to given norm.
"""
if norm is None:
pass
elif norm == "median":
C /= float(np.median(C))
elif norm == "max":
C /= float(np.max(C))
elif norm == "log":
C = np.log(1 + C)
elif norm == "loglog":
C = np.log1p(np.log1p(C))
else:
raise ValueError('Norm %s is not a valid option.\n'
'Valid options are:\n'
'median, max, log, loglog' % norm)
return C
def dots(*args):
""" dots function for multiple matrix multiply """
return reduce(np.dot, args)
def label_normalization(y, start=0):
""" Transform labels to start at a given value
Parameters
----------
y : array-like, shape (n, )
The vector of labels to be normalized.
start : int
Desired value for the smallest label in y (default=0)
Returns
-------
y : array-like, shape (n1, )
The input vector of labels normalized according to given start value.
"""
diff = np.min(np.unique(y)) - start
if diff != 0:
y -= diff
return y
def fun(f, q_in, q_out):
""" Utility function for parmap with no serializing problems """
while True:
i, x = q_in.get()
if i is None:
break
q_out.put((i, f(x)))
def parmap(f, X, nprocs=multiprocessing.cpu_count()):
""" paralell map for multiprocessing (only map on windows)"""
if not sys.platform.endswith('win32'):
q_in = multiprocessing.Queue(1)
q_out = multiprocessing.Queue()
proc = [multiprocessing.Process(target=fun, args=(f, q_in, q_out))
for _ in range(nprocs)]
for p in proc:
p.daemon = True
p.start()
sent = [q_in.put((i, x)) for i, x in enumerate(X)]
[q_in.put((None, None)) for _ in range(nprocs)]
res = [q_out.get() for _ in range(len(sent))]
[p.join() for p in proc]
return [x for i, x in sorted(res)]
else:
return list(map(f, X))
def check_params(**kwargs):
"""check_params: check whether some parameters are missing
"""
missing_params = []
check = True
for param in kwargs:
if kwargs[param] is None:
missing_params.append(param)
if len(missing_params) > 0:
print("POT - Warning: following necessary parameters are missing")
for p in missing_params:
print("\n", p)
check = False
return check
def check_random_state(seed):
"""Turn seed into a np.random.RandomState instance
Parameters
----------
seed : None | int | instance of RandomState
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (int, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('{} cannot be used to seed a numpy.random.RandomState'
' instance'.format(seed))
class deprecated(object):
"""Decorator to mark a function or class as deprecated.
deprecated class from scikit-learn package
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/deprecation.py
Issue a warning when the function is called/the class is instantiated and
adds a warning to the docstring.
The optional extra argument will be appended to the deprecation message
and the docstring. Note: to use this with the default value for extra, put
in an empty of parentheses:
>>> from ot.deprecation import deprecated # doctest: +SKIP
>>> @deprecated() # doctest: +SKIP
... def some_function(): pass # doctest: +SKIP
Parameters
----------
extra : str
To be added to the deprecation messages.
"""
# Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary,
# but with many changes.
def __init__(self, extra=''):
self.extra = extra
def __call__(self, obj):
"""Call method
Parameters
----------
obj : object
"""
if isinstance(obj, type):
return self._decorate_class(obj)
else:
return self._decorate_fun(obj)
def _decorate_class(self, cls):
msg = "Class %s is deprecated" % cls.__name__
if self.extra:
msg += "; %s" % self.extra
# FIXME: we should probably reset __new__ for full generality
init = cls.__init__
def wrapped(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return init(*args, **kwargs)
cls.__init__ = wrapped
wrapped.__name__ = '__init__'
wrapped.__doc__ = self._update_doc(init.__doc__)
wrapped.deprecated_original = init
return cls
def _decorate_fun(self, fun):
"""Decorate function fun"""
msg = "Function %s is deprecated" % fun.__name__
if self.extra:
msg += "; %s" % self.extra
def wrapped(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return fun(*args, **kwargs)
wrapped.__name__ = fun.__name__
wrapped.__dict__ = fun.__dict__
wrapped.__doc__ = self._update_doc(fun.__doc__)
return wrapped
def _update_doc(self, olddoc):
newdoc = "DEPRECATED"
if self.extra:
newdoc = "%s: %s" % (newdoc, self.extra)
if olddoc:
newdoc = "%s\n\n%s" % (newdoc, olddoc)
return newdoc
def _is_deprecated(func):
"""Helper to check if func is wraped by our deprecated decorator"""
if sys.version_info < (3, 5):
raise NotImplementedError("This is only available for python3.5 "
"or above")
closures = getattr(func, '__closure__', [])
if closures is None:
closures = []
is_deprecated = ('deprecated' in ''.join([c.cell_contents
for c in closures
if isinstance(c.cell_contents, str)]))
return is_deprecated
class BaseEstimator(object):
"""Base class for most objects in POT
Code adapted from sklearn BaseEstimator class
Notes
-----
All estimators should specify all the parameters that can be set
at the class level in their ``__init__`` as explicit keyword
arguments (no ``*args`` or ``**kwargs``).
"""
@classmethod
def _get_param_names(cls):
"""Get parameter names for the estimator"""
# fetch the constructor or the original constructor before
# deprecation wrapping if any
init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
if init is object.__init__:
# No explicit constructor to introspect
return []
# introspect the constructor arguments to find the model parameters
# to represent
init_signature = signature(init)
# Consider the constructor parameters excluding 'self'
parameters = [p for p in init_signature.parameters.values()
if p.name != 'self' and p.kind != p.VAR_KEYWORD]
for p in parameters:
if p.kind == p.VAR_POSITIONAL:
raise RuntimeError("POT estimators should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s with constructor %s doesn't "
" follow this convention."
% (cls, init_signature))
# Extract and sort argument names excluding 'self'
return sorted([p.name for p in parameters])
def get_params(self, deep=True):
"""Get parameters for this estimator.
Parameters
----------
deep : bool, optional
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : mapping of string to any
Parameter names mapped to their values.
"""
out = dict()
for key in self._get_param_names():
# We need deprecation warnings to always be on in order to
# catch deprecated param values.
# This is set in utils/__init__.py but it gets overwritten
# when running under python3 somehow.
warnings.simplefilter("always", DeprecationWarning)
try:
with warnings.catch_warnings(record=True) as w:
value = getattr(self, key, None)
if len(w) and w[0].category == DeprecationWarning:
# if the parameter is deprecated, don't show it
continue
finally:
warnings.filters.pop(0)
# XXX: should we rather test if instance of estimator?
if deep and hasattr(value, 'get_params'):
deep_items = value.get_params().items()
out.update((key + '__' + k, val) for k, val in deep_items)
out[key] = value
return out
def set_params(self, **params):
"""Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
Returns
-------
self
"""
if not params:
# Simple optimisation to gain speed (inspect is slow)
return self
valid_params = self.get_params(deep=True)
# for key, value in iteritems(params):
for key, value in params.items():
split = key.split('__', 1)
if len(split) > 1:
# nested objects case
name, sub_name = split
if name not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(name, self))
sub_object = valid_params[name]
sub_object.set_params(**{sub_name: value})
else:
# simple objects case
if key not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(key, self.__class__.__name__))
setattr(self, key, value)
return self
class UndefinedParameter(Exception):
"""
Aim at raising an Exception when a undefined parameter is called
"""
pass
|