1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
"""
==========================
Stochastic test
==========================
This example is designed to test the stochatic optimization algorithms module
for descrete and semicontinous measures from the POT library.
"""
# Author: Kilian Fatras <kilian.fatras@gmail.com>
#
# License: MIT License
import numpy as np
import ot
#############################################################################
# COMPUTE TEST FOR SEMI-DUAL PROBLEM
#############################################################################
#############################################################################
#
# TEST SAG algorithm
# ---------------------------------------------
# 2 identical discrete measures u defined on the same space with a
# regularization term, a learning rate and a number of iteration
def test_stochastic_sag():
# test sag
n = 15
reg = 1
numItermax = 30000
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
M = ot.dist(x, x)
G = ot.stochastic.solve_semi_dual_entropic(u, u, M, reg, "sag",
numItermax=numItermax)
# check constratints
np.testing.assert_allclose(
u, G.sum(1), atol=1e-04) # cf convergence sag
np.testing.assert_allclose(
u, G.sum(0), atol=1e-04) # cf convergence sag
#############################################################################
#
# TEST ASGD algorithm
# ---------------------------------------------
# 2 identical discrete measures u defined on the same space with a
# regularization term, a learning rate and a number of iteration
def test_stochastic_asgd():
# test asgd
n = 15
reg = 1
numItermax = 100000
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
M = ot.dist(x, x)
G, log = ot.stochastic.solve_semi_dual_entropic(u, u, M, reg, "asgd",
numItermax=numItermax, log=True)
# check constratints
np.testing.assert_allclose(
u, G.sum(1), atol=1e-03) # cf convergence asgd
np.testing.assert_allclose(
u, G.sum(0), atol=1e-03) # cf convergence asgd
#############################################################################
#
# TEST Convergence SAG and ASGD toward Sinkhorn's solution
# --------------------------------------------------------
# 2 identical discrete measures u defined on the same space with a
# regularization term, a learning rate and a number of iteration
def test_sag_asgd_sinkhorn():
# test all algorithms
n = 15
reg = 1
nb_iter = 100000
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
M = ot.dist(x, x)
G_asgd = ot.stochastic.solve_semi_dual_entropic(u, u, M, reg, "asgd",
numItermax=nb_iter)
G_sag = ot.stochastic.solve_semi_dual_entropic(u, u, M, reg, "sag",
numItermax=nb_iter)
G_sinkhorn = ot.sinkhorn(u, u, M, reg)
# check constratints
np.testing.assert_allclose(
G_sag.sum(1), G_sinkhorn.sum(1), atol=1e-03)
np.testing.assert_allclose(
G_sag.sum(0), G_sinkhorn.sum(0), atol=1e-03)
np.testing.assert_allclose(
G_asgd.sum(1), G_sinkhorn.sum(1), atol=1e-03)
np.testing.assert_allclose(
G_asgd.sum(0), G_sinkhorn.sum(0), atol=1e-03)
np.testing.assert_allclose(
G_sag, G_sinkhorn, atol=1e-03) # cf convergence sag
np.testing.assert_allclose(
G_asgd, G_sinkhorn, atol=1e-03) # cf convergence asgd
#############################################################################
# COMPUTE TEST FOR DUAL PROBLEM
#############################################################################
#############################################################################
#
# TEST SGD algorithm
# ---------------------------------------------
# 2 identical discrete measures u defined on the same space with a
# regularization term, a batch_size and a number of iteration
def test_stochastic_dual_sgd():
# test sgd
n = 10
reg = 1
numItermax = 15000
batch_size = 10
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
M = ot.dist(x, x)
G, log = ot.stochastic.solve_dual_entropic(u, u, M, reg, batch_size,
numItermax=numItermax, log=True)
# check constratints
np.testing.assert_allclose(
u, G.sum(1), atol=1e-03) # cf convergence sgd
np.testing.assert_allclose(
u, G.sum(0), atol=1e-03) # cf convergence sgd
#############################################################################
#
# TEST Convergence SGD toward Sinkhorn's solution
# --------------------------------------------------------
# 2 identical discrete measures u defined on the same space with a
# regularization term, a batch_size and a number of iteration
def test_dual_sgd_sinkhorn():
# test all dual algorithms
n = 10
reg = 1
nb_iter = 15000
batch_size = 10
rng = np.random.RandomState(0)
# Test uniform
x = rng.randn(n, 2)
u = ot.utils.unif(n)
M = ot.dist(x, x)
G_sgd = ot.stochastic.solve_dual_entropic(u, u, M, reg, batch_size,
numItermax=nb_iter)
G_sinkhorn = ot.sinkhorn(u, u, M, reg)
# check constratints
np.testing.assert_allclose(
G_sgd.sum(1), G_sinkhorn.sum(1), atol=1e-03)
np.testing.assert_allclose(
G_sgd.sum(0), G_sinkhorn.sum(0), atol=1e-03)
np.testing.assert_allclose(
G_sgd, G_sinkhorn, atol=1e-03) # cf convergence sgd
# Test gaussian
n = 30
reg = 1
batch_size = 30
a = ot.datasets.make_1D_gauss(n, 15, 5) # m= mean, s= std
b = ot.datasets.make_1D_gauss(n, 15, 5)
X_source = np.arange(n, dtype=np.float64)
Y_target = np.arange(n, dtype=np.float64)
M = ot.dist(X_source.reshape((n, 1)), Y_target.reshape((n, 1)))
M /= M.max()
G_sgd = ot.stochastic.solve_dual_entropic(a, b, M, reg, batch_size,
numItermax=nb_iter)
G_sinkhorn = ot.sinkhorn(a, b, M, reg)
# check constratints
np.testing.assert_allclose(
G_sgd.sum(1), G_sinkhorn.sum(1), atol=1e-03)
np.testing.assert_allclose(
G_sgd.sum(0), G_sinkhorn.sum(0), atol=1e-03)
np.testing.assert_allclose(
G_sgd, G_sinkhorn, atol=1e-03) # cf convergence sgd
|