1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
"""Tests for module Unbalanced OT with entropy regularization"""
# Author: Hicham Janati <hicham.janati@inria.fr>
#
# License: MIT License
import numpy as np
import ot
import pytest
from ot.unbalanced import barycenter_unbalanced
from scipy.special import logsumexp
@pytest.mark.parametrize("method", ["sinkhorn", "sinkhorn_stabilized"])
def test_unbalanced_convergence(method):
# test generalized sinkhorn for unbalanced OT
n = 100
rng = np.random.RandomState(42)
x = rng.randn(n, 2)
a = ot.utils.unif(n)
# make dists unbalanced
b = ot.utils.unif(n) * 1.5
M = ot.dist(x, x)
epsilon = 1.
reg_m = 1.
G, log = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg=epsilon,
reg_m=reg_m,
method=method,
log=True,
verbose=True)
loss = ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m,
method=method,
verbose=True)
# check fixed point equations
# in log-domain
fi = reg_m / (reg_m + epsilon)
logb = np.log(b + 1e-16)
loga = np.log(a + 1e-16)
logKtu = logsumexp(log["logu"][None, :] - M.T / epsilon, axis=1)
logKv = logsumexp(log["logv"][None, :] - M / epsilon, axis=1)
v_final = fi * (logb - logKtu)
u_final = fi * (loga - logKv)
np.testing.assert_allclose(
u_final, log["logu"], atol=1e-05)
np.testing.assert_allclose(
v_final, log["logv"], atol=1e-05)
# check if sinkhorn_unbalanced2 returns the correct loss
np.testing.assert_allclose((G * M).sum(), loss, atol=1e-5)
@pytest.mark.parametrize("method", ["sinkhorn", "sinkhorn_stabilized"])
def test_unbalanced_multiple_inputs(method):
# test generalized sinkhorn for unbalanced OT
n = 100
rng = np.random.RandomState(42)
x = rng.randn(n, 2)
a = ot.utils.unif(n)
# make dists unbalanced
b = rng.rand(n, 2)
M = ot.dist(x, x)
epsilon = 1.
reg_m = 1.
loss, log = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg=epsilon,
reg_m=reg_m,
method=method,
log=True,
verbose=True)
# check fixed point equations
# in log-domain
fi = reg_m / (reg_m + epsilon)
logb = np.log(b + 1e-16)
loga = np.log(a + 1e-16)[:, None]
logKtu = logsumexp(log["logu"][:, None, :] - M[:, :, None] / epsilon,
axis=0)
logKv = logsumexp(log["logv"][None, :] - M[:, :, None] / epsilon, axis=1)
v_final = fi * (logb - logKtu)
u_final = fi * (loga - logKv)
np.testing.assert_allclose(
u_final, log["logu"], atol=1e-05)
np.testing.assert_allclose(
v_final, log["logv"], atol=1e-05)
assert len(loss) == b.shape[1]
def test_stabilized_vs_sinkhorn():
# test if stable version matches sinkhorn
n = 100
# Gaussian distributions
a = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std
b1 = ot.datasets.make_1D_gauss(n, m=60, s=8)
b2 = ot.datasets.make_1D_gauss(n, m=30, s=4)
# creating matrix A containing all distributions
b = np.vstack((b1, b2)).T
M = ot.utils.dist0(n)
M /= np.median(M)
epsilon = 0.1
reg_m = 1.
G, log = ot.unbalanced.sinkhorn_unbalanced2(a, b, M, reg=epsilon,
method="sinkhorn_stabilized",
reg_m=reg_m,
log=True)
G2, log2 = ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m,
method="sinkhorn", log=True)
np.testing.assert_allclose(G, G2, atol=1e-5)
@pytest.mark.parametrize("method", ["sinkhorn", "sinkhorn_stabilized"])
def test_unbalanced_barycenter(method):
# test generalized sinkhorn for unbalanced OT barycenter
n = 100
rng = np.random.RandomState(42)
x = rng.randn(n, 2)
A = rng.rand(n, 2)
# make dists unbalanced
A = A * np.array([1, 2])[None, :]
M = ot.dist(x, x)
epsilon = 1.
reg_m = 1.
q, log = barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m,
method=method, log=True)
# check fixed point equations
fi = reg_m / (reg_m + epsilon)
logA = np.log(A + 1e-16)
logq = np.log(q + 1e-16)[:, None]
logKtu = logsumexp(log["logu"][:, None, :] - M[:, :, None] / epsilon,
axis=0)
logKv = logsumexp(log["logv"][None, :] - M[:, :, None] / epsilon, axis=1)
v_final = fi * (logq - logKtu)
u_final = fi * (logA - logKv)
np.testing.assert_allclose(
u_final, log["logu"], atol=1e-05)
np.testing.assert_allclose(
v_final, log["logv"], atol=1e-05)
def test_barycenter_stabilized_vs_sinkhorn():
# test generalized sinkhorn for unbalanced OT barycenter
n = 100
rng = np.random.RandomState(42)
x = rng.randn(n, 2)
A = rng.rand(n, 2)
# make dists unbalanced
A = A * np.array([1, 4])[None, :]
M = ot.dist(x, x)
epsilon = 0.5
reg_m = 10
qstable, log = barycenter_unbalanced(A, M, reg=epsilon,
reg_m=reg_m, log=True,
tau=100,
method="sinkhorn_stabilized",
)
q, log = barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m,
method="sinkhorn",
log=True)
np.testing.assert_allclose(
q, qstable, atol=1e-05)
def test_implemented_methods():
IMPLEMENTED_METHODS = ['sinkhorn', 'sinkhorn_stabilized']
TO_BE_IMPLEMENTED_METHODS = ['sinkhorn_reg_scaling']
NOT_VALID_TOKENS = ['foo']
# test generalized sinkhorn for unbalanced OT barycenter
n = 3
rng = np.random.RandomState(42)
x = rng.randn(n, 2)
a = ot.utils.unif(n)
# make dists unbalanced
b = ot.utils.unif(n) * 1.5
A = rng.rand(n, 2)
M = ot.dist(x, x)
epsilon = 1.
reg_m = 1.
for method in IMPLEMENTED_METHODS:
ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, reg_m,
method=method)
ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m,
method=method)
barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m,
method=method)
with pytest.warns(UserWarning, match='not implemented'):
for method in set(TO_BE_IMPLEMENTED_METHODS):
ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, reg_m,
method=method)
ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m,
method=method)
barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m,
method=method)
with pytest.raises(ValueError):
for method in set(NOT_VALID_TOKENS):
ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, reg_m,
method=method)
ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m,
method=method)
barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m,
method=method)
|