1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
"""Tests for module utils for timing and parallel computation """
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
import ot
import numpy as np
import sys
def test_parmap():
n = 10
def f(i):
return 1.0 * i * i
a = np.arange(n)
l1 = list(map(f, a))
l2 = list(ot.utils.parmap(f, a))
np.testing.assert_allclose(l1, l2)
def test_tic_toc():
import time
ot.tic()
time.sleep(0.5)
t = ot.toc()
t2 = ot.toq()
# test timing
np.testing.assert_allclose(0.5, t, rtol=1e-1, atol=1e-1)
# test toc vs toq
np.testing.assert_allclose(t, t2, rtol=1e-1, atol=1e-1)
def test_kernel():
n = 100
x = np.random.randn(n, 2)
K = ot.utils.kernel(x, x)
# gaussian kernel has ones on the diagonal
np.testing.assert_allclose(np.diag(K), np.ones(n))
def test_unif():
n = 100
u = ot.unif(n)
np.testing.assert_allclose(1, np.sum(u))
def test_dist():
n = 100
x = np.random.randn(n, 2)
D = np.zeros((n, n))
for i in range(n):
for j in range(n):
D[i, j] = np.sum(np.square(x[i, :] - x[j, :]))
D2 = ot.dist(x, x)
D3 = ot.dist(x)
# dist shoul return squared euclidean
np.testing.assert_allclose(D, D2)
np.testing.assert_allclose(D, D3)
def test_dist0():
n = 100
M = ot.utils.dist0(n, method='lin_square')
# dist0 default to linear sampling with quadratic loss
np.testing.assert_allclose(M[0, -1], (n - 1) * (n - 1))
def test_dots():
n1, n2, n3, n4 = 100, 50, 200, 100
A = np.random.randn(n1, n2)
B = np.random.randn(n2, n3)
C = np.random.randn(n3, n4)
X1 = ot.utils.dots(A, B, C)
X2 = A.dot(B.dot(C))
np.testing.assert_allclose(X1, X2)
def test_clean_zeros():
n = 100
nz = 50
nz2 = 20
u1 = ot.unif(n)
u1[:nz] = 0
u1 = u1 / u1.sum()
u2 = ot.unif(n)
u2[:nz2] = 0
u2 = u2 / u2.sum()
M = ot.utils.dist0(n)
a, b, M2 = ot.utils.clean_zeros(u1, u2, M)
assert len(a) == n - nz
assert len(b) == n - nz2
def test_cost_normalization():
C = np.random.rand(10, 10)
# does nothing
M0 = ot.utils.cost_normalization(C)
np.testing.assert_allclose(C, M0)
M = ot.utils.cost_normalization(C, 'median')
np.testing.assert_allclose(np.median(M), 1)
M = ot.utils.cost_normalization(C, 'max')
np.testing.assert_allclose(M.max(), 1)
M = ot.utils.cost_normalization(C, 'log')
np.testing.assert_allclose(M.max(), np.log(1 + C).max())
M = ot.utils.cost_normalization(C, 'loglog')
np.testing.assert_allclose(M.max(), np.log(1 + np.log(1 + C)).max())
def test_check_params():
res1 = ot.utils.check_params(first='OK', second=20)
assert res1 is True
res0 = ot.utils.check_params(first='OK', second=None)
assert res0 is False
def test_deprecated_func():
@ot.utils.deprecated('deprecated text for fun')
def fun():
pass
def fun2():
pass
@ot.utils.deprecated('deprecated text for class')
class Class():
pass
if sys.version_info < (3, 5):
print('Not tested')
else:
assert ot.utils._is_deprecated(fun) is True
assert ot.utils._is_deprecated(fun2) is False
def test_BaseEstimator():
class Class(ot.utils.BaseEstimator):
def __init__(self, first='spam', second='eggs'):
self.first = first
self.second = second
cl = Class()
names = cl._get_param_names()
assert 'first' in names
assert 'second' in names
params = cl.get_params()
assert 'first' in params
assert 'second' in params
params['first'] = 'spam again'
cl.set_params(**params)
assert cl.first == 'spam again'
|