1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
============================
Linear OT mapping estimation
============================
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 2
import os
from pathlib import Path
import numpy as np
from matplotlib import pyplot as plt
import ot
##############################################################################
# Generate data
# -------------
n = 1000
d = 2
sigma = .1
rng = np.random.RandomState(42)
# source samples
angles = rng.rand(n, 1) * 2 * np.pi
xs = np.concatenate((np.sin(angles), np.cos(angles)),
axis=1) + sigma * rng.randn(n, 2)
xs[:n // 2, 1] += 2
# target samples
anglet = rng.rand(n, 1) * 2 * np.pi
xt = np.concatenate((np.sin(anglet), np.cos(anglet)),
axis=1) + sigma * rng.randn(n, 2)
xt[:n // 2, 1] += 2
A = np.array([[1.5, .7], [.7, 1.5]])
b = np.array([[4, 2]])
xt = xt.dot(A) + b
##############################################################################
# Plot data
# ---------
plt.figure(1, (5, 5))
plt.plot(xs[:, 0], xs[:, 1], '+')
plt.plot(xt[:, 0], xt[:, 1], 'o')
##############################################################################
# Estimate linear mapping and transport
# -------------------------------------
Ae, be = ot.da.OT_mapping_linear(xs, xt)
xst = xs.dot(Ae) + be
##############################################################################
# Plot transported samples
# ------------------------
plt.figure(1, (5, 5))
plt.clf()
plt.plot(xs[:, 0], xs[:, 1], '+')
plt.plot(xt[:, 0], xt[:, 1], 'o')
plt.plot(xst[:, 0], xst[:, 1], '+')
plt.show()
##############################################################################
# Load image data
# ---------------
def im2mat(img):
"""Converts and image to matrix (one pixel per line)"""
return img.reshape((img.shape[0] * img.shape[1], img.shape[2]))
def mat2im(X, shape):
"""Converts back a matrix to an image"""
return X.reshape(shape)
def minmax(img):
return np.clip(img, 0, 1)
# Loading images
this_file = os.path.realpath('__file__')
data_path = os.path.join(Path(this_file).parent.parent.parent, 'data')
I1 = plt.imread(os.path.join(data_path, 'ocean_day.jpg')).astype(np.float64) / 256
I2 = plt.imread(os.path.join(data_path, 'ocean_sunset.jpg')).astype(np.float64) / 256
X1 = im2mat(I1)
X2 = im2mat(I2)
##############################################################################
# Estimate mapping and adapt
# ----------------------------
mapping = ot.da.LinearTransport()
mapping.fit(Xs=X1, Xt=X2)
xst = mapping.transform(Xs=X1)
xts = mapping.inverse_transform(Xt=X2)
I1t = minmax(mat2im(xst, I1.shape))
I2t = minmax(mat2im(xts, I2.shape))
# %%
##############################################################################
# Plot transformed images
# -----------------------
plt.figure(2, figsize=(10, 7))
plt.subplot(2, 2, 1)
plt.imshow(I1)
plt.axis('off')
plt.title('Im. 1')
plt.subplot(2, 2, 2)
plt.imshow(I2)
plt.axis('off')
plt.title('Im. 2')
plt.subplot(2, 2, 3)
plt.imshow(I1t)
plt.axis('off')
plt.title('Mapping Im. 1')
plt.subplot(2, 2, 4)
plt.imshow(I2t)
plt.axis('off')
plt.title('Inverse mapping Im. 2')
|