1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
# -*- coding: utf-8 -*-
"""
=====================================
Gromov-Wasserstein Barycenter example
=====================================
This example is designed to show how to use the Gromov-Wasserstein distance
computation in POT.
"""
# Author: Erwan Vautier <erwan.vautier@gmail.com>
# Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License
import os
from pathlib import Path
import numpy as np
import scipy as sp
from matplotlib import pyplot as plt
from sklearn import manifold
from sklearn.decomposition import PCA
import ot
##############################################################################
# Smacof MDS
# ----------
#
# This function allows to find an embedding of points given a dissimilarity matrix
# that will be given by the output of the algorithm
def smacof_mds(C, dim, max_iter=3000, eps=1e-9):
"""
Returns an interpolated point cloud following the dissimilarity matrix C
using SMACOF multidimensional scaling (MDS) in specific dimensionned
target space
Parameters
----------
C : ndarray, shape (ns, ns)
dissimilarity matrix
dim : int
dimension of the targeted space
max_iter : int
Maximum number of iterations of the SMACOF algorithm for a single run
eps : float
relative tolerance w.r.t stress to declare converge
Returns
-------
npos : ndarray, shape (R, dim)
Embedded coordinates of the interpolated point cloud (defined with
one isometry)
"""
rng = np.random.RandomState(seed=3)
mds = manifold.MDS(
dim,
max_iter=max_iter,
eps=1e-9,
dissimilarity='precomputed',
n_init=1)
pos = mds.fit(C).embedding_
nmds = manifold.MDS(
2,
max_iter=max_iter,
eps=1e-9,
dissimilarity="precomputed",
random_state=rng,
n_init=1)
npos = nmds.fit_transform(C, init=pos)
return npos
##############################################################################
# Data preparation
# ----------------
#
# The four distributions are constructed from 4 simple images
def im2mat(img):
"""Converts and image to matrix (one pixel per line)"""
return img.reshape((img.shape[0] * img.shape[1], img.shape[2]))
this_file = os.path.realpath('__file__')
data_path = os.path.join(Path(this_file).parent.parent.parent, 'data')
square = plt.imread(os.path.join(data_path, 'square.png')).astype(np.float64)[:, :, 2]
cross = plt.imread(os.path.join(data_path, 'cross.png')).astype(np.float64)[:, :, 2]
triangle = plt.imread(os.path.join(data_path, 'triangle.png')).astype(np.float64)[:, :, 2]
star = plt.imread(os.path.join(data_path, 'star.png')).astype(np.float64)[:, :, 2]
shapes = [square, cross, triangle, star]
S = 4
xs = [[] for i in range(S)]
for nb in range(4):
for i in range(8):
for j in range(8):
if shapes[nb][i, j] < 0.95:
xs[nb].append([j, 8 - i])
xs = np.array([np.array(xs[0]), np.array(xs[1]),
np.array(xs[2]), np.array(xs[3])])
##############################################################################
# Barycenter computation
# ----------------------
ns = [len(xs[s]) for s in range(S)]
n_samples = 30
"""Compute all distances matrices for the four shapes"""
Cs = [sp.spatial.distance.cdist(xs[s], xs[s]) for s in range(S)]
Cs = [cs / cs.max() for cs in Cs]
ps = [ot.unif(ns[s]) for s in range(S)]
p = ot.unif(n_samples)
lambdast = [[float(i) / 3, float(3 - i) / 3] for i in [1, 2]]
Ct01 = [0 for i in range(2)]
for i in range(2):
Ct01[i] = ot.gromov.gromov_barycenters(n_samples, [Cs[0], Cs[1]],
[ps[0], ps[1]
], p, lambdast[i], 'square_loss', # 5e-4,
max_iter=100, tol=1e-3)
Ct02 = [0 for i in range(2)]
for i in range(2):
Ct02[i] = ot.gromov.gromov_barycenters(n_samples, [Cs[0], Cs[2]],
[ps[0], ps[2]
], p, lambdast[i], 'square_loss', # 5e-4,
max_iter=100, tol=1e-3)
Ct13 = [0 for i in range(2)]
for i in range(2):
Ct13[i] = ot.gromov.gromov_barycenters(n_samples, [Cs[1], Cs[3]],
[ps[1], ps[3]
], p, lambdast[i], 'square_loss', # 5e-4,
max_iter=100, tol=1e-3)
Ct23 = [0 for i in range(2)]
for i in range(2):
Ct23[i] = ot.gromov.gromov_barycenters(n_samples, [Cs[2], Cs[3]],
[ps[2], ps[3]
], p, lambdast[i], 'square_loss', # 5e-4,
max_iter=100, tol=1e-3)
##############################################################################
# Visualization
# -------------
#
# The PCA helps in getting consistency between the rotations
clf = PCA(n_components=2)
npos = [0, 0, 0, 0]
npos = [smacof_mds(Cs[s], 2) for s in range(S)]
npost01 = [0, 0]
npost01 = [smacof_mds(Ct01[s], 2) for s in range(2)]
npost01 = [clf.fit_transform(npost01[s]) for s in range(2)]
npost02 = [0, 0]
npost02 = [smacof_mds(Ct02[s], 2) for s in range(2)]
npost02 = [clf.fit_transform(npost02[s]) for s in range(2)]
npost13 = [0, 0]
npost13 = [smacof_mds(Ct13[s], 2) for s in range(2)]
npost13 = [clf.fit_transform(npost13[s]) for s in range(2)]
npost23 = [0, 0]
npost23 = [smacof_mds(Ct23[s], 2) for s in range(2)]
npost23 = [clf.fit_transform(npost23[s]) for s in range(2)]
fig = plt.figure(figsize=(10, 10))
ax1 = plt.subplot2grid((4, 4), (0, 0))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax1.scatter(npos[0][:, 0], npos[0][:, 1], color='r')
ax2 = plt.subplot2grid((4, 4), (0, 1))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax2.scatter(npost01[1][:, 0], npost01[1][:, 1], color='b')
ax3 = plt.subplot2grid((4, 4), (0, 2))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax3.scatter(npost01[0][:, 0], npost01[0][:, 1], color='b')
ax4 = plt.subplot2grid((4, 4), (0, 3))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax4.scatter(npos[1][:, 0], npos[1][:, 1], color='r')
ax5 = plt.subplot2grid((4, 4), (1, 0))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax5.scatter(npost02[1][:, 0], npost02[1][:, 1], color='b')
ax6 = plt.subplot2grid((4, 4), (1, 3))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax6.scatter(npost13[1][:, 0], npost13[1][:, 1], color='b')
ax7 = plt.subplot2grid((4, 4), (2, 0))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax7.scatter(npost02[0][:, 0], npost02[0][:, 1], color='b')
ax8 = plt.subplot2grid((4, 4), (2, 3))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax8.scatter(npost13[0][:, 0], npost13[0][:, 1], color='b')
ax9 = plt.subplot2grid((4, 4), (3, 0))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax9.scatter(npos[2][:, 0], npos[2][:, 1], color='r')
ax10 = plt.subplot2grid((4, 4), (3, 1))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax10.scatter(npost23[1][:, 0], npost23[1][:, 1], color='b')
ax11 = plt.subplot2grid((4, 4), (3, 2))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax11.scatter(npost23[0][:, 0], npost23[0][:, 1], color='b')
ax12 = plt.subplot2grid((4, 4), (3, 3))
plt.xlim((-1, 1))
plt.ylim((-1, 1))
ax12.scatter(npos[3][:, 0], npos[3][:, 1], color='r')
|