1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
# -*- coding: utf-8 -*-
"""
==========================================
Optimal transport with factored couplings
==========================================
Illustration of the factored coupling OT between 2D empirical distributions
"""
# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 2
import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot
# %%
# Generate data an plot it
# ------------------------
# parameters and data generation
np.random.seed(42)
n = 100 # nb samples
xs = np.random.rand(n, 2) - .5
xs = xs + np.sign(xs)
xt = np.random.rand(n, 2) - .5
a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples
#%% plot samples
pl.figure(1)
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
pl.legend(loc=0)
pl.title('Source and target distributions')
# %%
# Compute Factore OT and exact OT solutions
# --------------------------------------
#%% EMD
M = ot.dist(xs, xt)
G0 = ot.emd(a, b, M)
#%% factored OT OT
Ga, Gb, xb = ot.factored_optimal_transport(xs, xt, a, b, r=4)
# %%
# Plot factored OT and exact OT solutions
# --------------------------------------
pl.figure(2, (14, 4))
pl.subplot(1, 3, 1)
ot.plot.plot2D_samples_mat(xs, xt, G0, c=[.2, .2, .2], alpha=0.1)
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
pl.title('Exact OT with samples')
pl.subplot(1, 3, 2)
ot.plot.plot2D_samples_mat(xs, xb, Ga, c=[.6, .6, .9], alpha=0.5)
ot.plot.plot2D_samples_mat(xb, xt, Gb, c=[.9, .6, .6], alpha=0.5)
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
pl.plot(xb[:, 0], xb[:, 1], 'og', label='Template samples')
pl.title('Factored OT with template samples')
pl.subplot(1, 3, 3)
ot.plot.plot2D_samples_mat(xs, xt, Ga.dot(Gb), c=[.2, .2, .2], alpha=0.1)
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
pl.title('Factored OT low rank OT plan')
|