1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
# -*- coding: utf-8 -*-
"""
Dimension reduction with OT
.. warning::
Note that by default the module is not imported in :mod:`ot`. In order to
use it you need to explicitely import :mod:`ot.dr`
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
# Minhui Huang <mhhuang@ucdavis.edu>
# Jakub Zadrozny <jakub.r.zadrozny@gmail.com>
#
# License: MIT License
from scipy import linalg
import autograd.numpy as np
from pymanopt.function import Autograd
from pymanopt.manifolds import Stiefel
from pymanopt import Problem
from pymanopt.solvers import SteepestDescent, TrustRegions
def dist(x1, x2):
r""" Compute squared euclidean distance between samples (autograd)
"""
x1p2 = np.sum(np.square(x1), 1)
x2p2 = np.sum(np.square(x2), 1)
return x1p2.reshape((-1, 1)) + x2p2.reshape((1, -1)) - 2 * np.dot(x1, x2.T)
def sinkhorn(w1, w2, M, reg, k):
r"""Sinkhorn algorithm with fixed number of iteration (autograd)
"""
K = np.exp(-M / reg)
ui = np.ones((M.shape[0],))
vi = np.ones((M.shape[1],))
for i in range(k):
vi = w2 / (np.dot(K.T, ui))
ui = w1 / (np.dot(K, vi))
G = ui.reshape((M.shape[0], 1)) * K * vi.reshape((1, M.shape[1]))
return G
def logsumexp(M, axis):
r"""Log-sum-exp reduction compatible with autograd (no numpy implementation)
"""
amax = np.amax(M, axis=axis, keepdims=True)
return np.log(np.sum(np.exp(M - amax), axis=axis)) + np.squeeze(amax, axis=axis)
def sinkhorn_log(w1, w2, M, reg, k):
r"""Sinkhorn algorithm in log-domain with fixed number of iteration (autograd)
"""
Mr = -M / reg
ui = np.zeros((M.shape[0],))
vi = np.zeros((M.shape[1],))
log_w1 = np.log(w1)
log_w2 = np.log(w2)
for i in range(k):
vi = log_w2 - logsumexp(Mr + ui[:, None], 0)
ui = log_w1 - logsumexp(Mr + vi[None, :], 1)
G = np.exp(ui[:, None] + Mr + vi[None, :])
return G
def split_classes(X, y):
r"""split samples in :math:`\mathbf{X}` by classes in :math:`\mathbf{y}`
"""
lstsclass = np.unique(y)
return [X[y == i, :].astype(np.float32) for i in lstsclass]
def fda(X, y, p=2, reg=1e-16):
r"""Fisher Discriminant Analysis
Parameters
----------
X : ndarray, shape (n, d)
Training samples.
y : ndarray, shape (n,)
Labels for training samples.
p : int, optional
Size of dimensionnality reduction.
reg : float, optional
Regularization term >0 (ridge regularization)
Returns
-------
P : ndarray, shape (d, p)
Optimal transportation matrix for the given parameters
proj : callable
projection function including mean centering
"""
mx = np.mean(X)
X -= mx.reshape((1, -1))
# data split between classes
d = X.shape[1]
xc = split_classes(X, y)
nc = len(xc)
p = min(nc - 1, p)
Cw = 0
for x in xc:
Cw += np.cov(x, rowvar=False)
Cw /= nc
mxc = np.zeros((d, nc))
for i in range(nc):
mxc[:, i] = np.mean(xc[i])
mx0 = np.mean(mxc, 1)
Cb = 0
for i in range(nc):
Cb += (mxc[:, i] - mx0).reshape((-1, 1)) * \
(mxc[:, i] - mx0).reshape((1, -1))
w, V = linalg.eig(Cb, Cw + reg * np.eye(d))
idx = np.argsort(w.real)
Popt = V[:, idx[-p:]]
def proj(X):
return (X - mx.reshape((1, -1))).dot(Popt)
return Popt, proj
def wda(X, y, p=2, reg=1, k=10, solver=None, sinkhorn_method='sinkhorn', maxiter=100, verbose=0, P0=None, normalize=False):
r"""
Wasserstein Discriminant Analysis :ref:`[11] <references-wda>`
The function solves the following optimization problem:
.. math::
\mathbf{P} = \mathop{\arg \min}_\mathbf{P} \quad
\frac{\sum\limits_i W(P \mathbf{X}^i, P \mathbf{X}^i)}{\sum\limits_{i, j \neq i} W(P \mathbf{X}^i, P \mathbf{X}^j)}
where :
- :math:`P` is a linear projection operator in the Stiefel(`p`, `d`) manifold
- :math:`W` is entropic regularized Wasserstein distances
- :math:`\mathbf{X}^i` are samples in the dataset corresponding to class i
**Choosing a Sinkhorn solver**
By default and when using a regularization parameter that is not too small
the default sinkhorn solver should be enough. If you need to use a small
regularization to get sparse cost matrices, you should use the
:py:func:`ot.dr.sinkhorn_log` solver that will avoid numerical
errors, but can be slow in practice.
Parameters
----------
X : ndarray, shape (n, d)
Training samples.
y : ndarray, shape (n,)
Labels for training samples.
p : int, optional
Size of dimensionnality reduction.
reg : float, optional
Regularization term >0 (entropic regularization)
solver : None | str, optional
None for steepest descent or 'TrustRegions' for trust regions algorithm
else should be a pymanopt.solvers
sinkhorn_method : str
method used for the Sinkhorn solver, either 'sinkhorn' or 'sinkhorn_log'
P0 : ndarray, shape (d, p)
Initial starting point for projection.
normalize : bool, optional
Normalise the Wasserstaiun distance by the average distance on P0 (default : False)
verbose : int, optional
Print information along iterations.
Returns
-------
P : ndarray, shape (d, p)
Optimal transportation matrix for the given parameters
proj : callable
Projection function including mean centering.
.. _references-wda:
References
----------
.. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016).
Wasserstein Discriminant Analysis. arXiv preprint arXiv:1608.08063.
""" # noqa
if sinkhorn_method.lower() == 'sinkhorn':
sinkhorn_solver = sinkhorn
elif sinkhorn_method.lower() == 'sinkhorn_log':
sinkhorn_solver = sinkhorn_log
else:
raise ValueError("Unknown Sinkhorn method '%s'." % sinkhorn_method)
mx = np.mean(X)
X -= mx.reshape((1, -1))
# data split between classes
d = X.shape[1]
xc = split_classes(X, y)
# compute uniform weighs
wc = [np.ones((x.shape[0]), dtype=np.float32) / x.shape[0] for x in xc]
# pre-compute reg_c,c'
if P0 is not None and normalize:
regmean = np.zeros((len(xc), len(xc)))
for i, xi in enumerate(xc):
xi = np.dot(xi, P0)
for j, xj in enumerate(xc[i:]):
xj = np.dot(xj, P0)
M = dist(xi, xj)
regmean[i, j] = np.sum(M) / (len(xi) * len(xj))
else:
regmean = np.ones((len(xc), len(xc)))
@Autograd
def cost(P):
# wda loss
loss_b = 0
loss_w = 0
for i, xi in enumerate(xc):
xi = np.dot(xi, P)
for j, xj in enumerate(xc[i:]):
xj = np.dot(xj, P)
M = dist(xi, xj)
G = sinkhorn_solver(wc[i], wc[j + i], M, reg * regmean[i, j], k)
if j == 0:
loss_w += np.sum(G * M)
else:
loss_b += np.sum(G * M)
# loss inversed because minimization
return loss_w / loss_b
# declare manifold and problem
manifold = Stiefel(d, p)
problem = Problem(manifold=manifold, cost=cost)
# declare solver and solve
if solver is None:
solver = SteepestDescent(maxiter=maxiter, logverbosity=verbose)
elif solver in ['tr', 'TrustRegions']:
solver = TrustRegions(maxiter=maxiter, logverbosity=verbose)
Popt = solver.solve(problem, x=P0)
def proj(X):
return (X - mx.reshape((1, -1))).dot(Popt)
return Popt, proj
def projection_robust_wasserstein(X, Y, a, b, tau, U0=None, reg=0.1, k=2, stopThr=1e-3, maxiter=100, verbose=0):
r"""
Projection Robust Wasserstein Distance :ref:`[32] <references-projection-robust-wasserstein>`
The function solves the following optimization problem:
.. math::
\max_{U \in St(d, k)} \ \min_{\pi \in \Pi(\mu,\nu)} \quad \sum_{i,j} \pi_{i,j}
\|U^T(\mathbf{x}_i - \mathbf{y}_j)\|^2 - \mathrm{reg} \cdot H(\pi)
- :math:`U` is a linear projection operator in the Stiefel(`d`, `k`) manifold
- :math:`H(\pi)` is entropy regularizer
- :math:`\mathbf{x}_i`, :math:`\mathbf{y}_j` are samples of measures :math:`\mu` and :math:`\nu` respectively
Parameters
----------
X : ndarray, shape (n, d)
Samples from measure :math:`\mu`
Y : ndarray, shape (n, d)
Samples from measure :math:`\nu`
a : ndarray, shape (n, )
weights for measure :math:`\mu`
b : ndarray, shape (n, )
weights for measure :math:`\nu`
tau : float
stepsize for Riemannian Gradient Descent
U0 : ndarray, shape (d, p)
Initial starting point for projection.
reg : float, optional
Regularization term >0 (entropic regularization)
k : int
Subspace dimension
stopThr : float, optional
Stop threshold on error (>0)
verbose : int, optional
Print information along iterations.
Returns
-------
pi : ndarray, shape (n, n)
Optimal transportation matrix for the given parameters
U : ndarray, shape (d, k)
Projection operator.
.. _references-projection-robust-wasserstein:
References
----------
.. [32] Huang, M. , Ma S. & Lai L. (2021).
A Riemannian Block Coordinate Descent Method for Computing
the Projection Robust Wasserstein Distance, ICML.
""" # noqa
# initialization
n, d = X.shape
m, d = Y.shape
a = np.asarray(a, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
u = np.ones(n) / n
v = np.ones(m) / m
ones = np.ones((n, m))
assert d > k
if U0 is None:
U = np.random.randn(d, k)
U, _ = np.linalg.qr(U)
else:
U = U0
def Vpi(X, Y, a, b, pi):
# Return the second order matrix of the displacements: sum_ij { (pi)_ij (X_i-Y_j)(X_i-Y_j)^T }.
A = X.T.dot(pi).dot(Y)
return X.T.dot(np.diag(a)).dot(X) + Y.T.dot(np.diag(np.sum(pi, 0))).dot(Y) - A - A.T
err = 1
iter = 0
while err > stopThr and iter < maxiter:
# Projected cost matrix
UUT = U.dot(U.T)
M = np.diag(np.diag(X.dot(UUT.dot(X.T)))).dot(ones) + ones.dot(
np.diag(np.diag(Y.dot(UUT.dot(Y.T))))) - 2 * X.dot(UUT.dot(Y.T))
A = np.empty(M.shape, dtype=M.dtype)
np.divide(M, -reg, out=A)
np.exp(A, out=A)
# Sinkhorn update
Ap = (1 / a).reshape(-1, 1) * A
AtransposeU = np.dot(A.T, u)
v = np.divide(b, AtransposeU)
u = 1. / np.dot(Ap, v)
pi = u.reshape((-1, 1)) * A * v.reshape((1, -1))
V = Vpi(X, Y, a, b, pi)
# Riemannian gradient descent
G = 2 / reg * V.dot(U)
GTU = G.T.dot(U)
xi = G - U.dot(GTU + GTU.T) / 2 # Riemannian gradient
U, _ = np.linalg.qr(U + tau * xi) # Retraction by QR decomposition
grad_norm = np.linalg.norm(xi)
err = max(reg * grad_norm, np.linalg.norm(np.sum(pi, 0) - b, 1))
f_val = np.trace(U.T.dot(V.dot(U)))
if verbose:
print('RBCD Iteration: ', iter, ' error', err, '\t fval: ', f_val)
iter = iter + 1
return pi, U
|