1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
# -*- coding: utf-8 -*-
"""
Solvers for the original linear program OT problem
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
import os
import multiprocessing
import sys
import numpy as np
import warnings
from . import cvx
from .cvx import barycenter
# import compiled emd
from .emd_wrap import emd_c, check_result, emd_1d_sorted
from .solver_1d import emd_1d, emd2_1d, wasserstein_1d
from ..utils import dist, list_to_array
from ..utils import parmap
from ..backend import get_backend
__all__ = ['emd', 'emd2', 'barycenter', 'free_support_barycenter', 'cvx', ' emd_1d_sorted',
'emd_1d', 'emd2_1d', 'wasserstein_1d']
def check_number_threads(numThreads):
"""Checks whether or not the requested number of threads has a valid value.
Parameters
----------
numThreads : int or str
The requested number of threads, should either be a strictly positive integer or "max" or None
Returns
-------
numThreads : int
Corrected number of threads
"""
if (numThreads is None) or (isinstance(numThreads, str) and numThreads.lower() == 'max'):
return -1
if (not isinstance(numThreads, int)) or numThreads < 1:
raise ValueError('numThreads should either be "max" or a strictly positive integer')
return numThreads
def center_ot_dual(alpha0, beta0, a=None, b=None):
r"""Center dual OT potentials w.r.t. their weights
The main idea of this function is to find unique dual potentials
that ensure some kind of centering/fairness. The main idea is to find dual potentials that lead to the same final objective value for both source and targets (see below for more details). It will help having
stability when multiple calling of the OT solver with small changes.
Basically we add another constraint to the potential that will not
change the objective value but will ensure unicity. The constraint
is the following:
.. math::
\alpha^T \mathbf{a} = \beta^T \mathbf{b}
in addition to the OT problem constraints.
since :math:`\sum_i a_i=\sum_j b_j` this can be solved by adding/removing
a constant from both :math:`\alpha_0` and :math:`\beta_0`.
.. math::
c &= \frac{\beta_0^T \mathbf{b} - \alpha_0^T \mathbf{a}}{\mathbf{1}^T \mathbf{b} + \mathbf{1}^T \mathbf{a}}
\alpha &= \alpha_0 + c
\beta &= \beta_0 + c
Parameters
----------
alpha0 : (ns,) numpy.ndarray, float64
Source dual potential
beta0 : (nt,) numpy.ndarray, float64
Target dual potential
a : (ns,) numpy.ndarray, float64
Source histogram (uniform weight if empty list)
b : (nt,) numpy.ndarray, float64
Target histogram (uniform weight if empty list)
Returns
-------
alpha : (ns,) numpy.ndarray, float64
Source centered dual potential
beta : (nt,) numpy.ndarray, float64
Target centered dual potential
"""
# if no weights are provided, use uniform
if a is None:
a = np.ones(alpha0.shape[0]) / alpha0.shape[0]
if b is None:
b = np.ones(beta0.shape[0]) / beta0.shape[0]
# compute constant that balances the weighted sums of the duals
c = (b.dot(beta0) - a.dot(alpha0)) / (a.sum() + b.sum())
# update duals
alpha = alpha0 + c
beta = beta0 - c
return alpha, beta
def estimate_dual_null_weights(alpha0, beta0, a, b, M):
r"""Estimate feasible values for 0-weighted dual potentials
The feasible values are computed efficiently but rather coarsely.
.. warning::
This function is necessary because the C++ solver in `emd_c`
discards all samples in the distributions with
zeros weights. This means that while the primal variable (transport
matrix) is exact, the solver only returns feasible dual potentials
on the samples with weights different from zero.
First we compute the constraints violations:
.. math::
\mathbf{V} = \alpha + \beta^T - \mathbf{M}
Next we compute the max amount of violation per row (:math:`\alpha`) and
columns (:math:`beta`)
.. math::
\mathbf{v^a}_i = \max_j \mathbf{V}_{i,j}
\mathbf{v^b}_j = \max_i \mathbf{V}_{i,j}
Finally we update the dual potential with 0 weights if a
constraint is violated
.. math::
\alpha_i = \alpha_i - \mathbf{v^a}_i \quad \text{ if } \mathbf{a}_i=0 \text{ and } \mathbf{v^a}_i>0
\beta_j = \beta_j - \mathbf{v^b}_j \quad \text{ if } \mathbf{b}_j=0 \text{ and } \mathbf{v^b}_j > 0
In the end the dual potentials are centered using function
:py:func:`ot.lp.center_ot_dual`.
Note that all those updates do not change the objective value of the
solution but provide dual potentials that do not violate the constraints.
Parameters
----------
alpha0 : (ns,) numpy.ndarray, float64
Source dual potential
beta0 : (nt,) numpy.ndarray, float64
Target dual potential
alpha0 : (ns,) numpy.ndarray, float64
Source dual potential
beta0 : (nt,) numpy.ndarray, float64
Target dual potential
a : (ns,) numpy.ndarray, float64
Source distribution (uniform weights if empty list)
b : (nt,) numpy.ndarray, float64
Target distribution (uniform weights if empty list)
M : (ns,nt) numpy.ndarray, float64
Loss matrix (c-order array with type float64)
Returns
-------
alpha : (ns,) numpy.ndarray, float64
Source corrected dual potential
beta : (nt,) numpy.ndarray, float64
Target corrected dual potential
"""
# binary indexing of non-zeros weights
asel = a != 0
bsel = b != 0
# compute dual constraints violation
constraint_violation = alpha0[:, None] + beta0[None, :] - M
# Compute largest violation per line and columns
aviol = np.max(constraint_violation, 1)
bviol = np.max(constraint_violation, 0)
# update corrects violation of
alpha_up = -1 * ~asel * np.maximum(aviol, 0)
beta_up = -1 * ~bsel * np.maximum(bviol, 0)
alpha = alpha0 + alpha_up
beta = beta0 + beta_up
return center_ot_dual(alpha, beta, a, b)
def emd(a, b, M, numItermax=100000, log=False, center_dual=True, numThreads=1):
r"""Solves the Earth Movers distance problem and returns the OT matrix
.. math::
\gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F
s.t. \ \gamma \mathbf{1} = \mathbf{a}
\gamma^T \mathbf{1} = \mathbf{b}
\gamma \geq 0
where :
- :math:`\mathbf{M}` is the metric cost matrix
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are the sample weights
.. warning:: Note that the :math:`\mathbf{M}` matrix in numpy needs to be a C-order
numpy.array in float64 format. It will be converted if not in this
format
.. note:: This function is backend-compatible and will work on arrays
from all compatible backends. But the algorithm uses the C++ CPU backend
which can lead to copy overhead on GPU arrays.
.. note:: This function will cast the computed transport plan to the data type
of the provided input with the following priority: :math:`\mathbf{a}`,
then :math:`\mathbf{b}`, then :math:`\mathbf{M}` if marginals are not provided.
Casting to an integer tensor might result in a loss of precision.
If this behaviour is unwanted, please make sure to provide a
floating point input.
Uses the algorithm proposed in :ref:`[1] <references-emd>`.
Parameters
----------
a : (ns,) array-like, float
Source histogram (uniform weight if empty list)
b : (nt,) array-like, float
Target histogram (uniform weight if empty list)
M : (ns,nt) array-like, float
Loss matrix (c-order array in numpy with type float64)
numItermax : int, optional (default=100000)
The maximum number of iterations before stopping the optimization
algorithm if it has not converged.
log: bool, optional (default=False)
If True, returns a dictionary containing the cost and dual variables.
Otherwise returns only the optimal transportation matrix.
center_dual: boolean, optional (default=True)
If True, centers the dual potential using function
:ref:`center_ot_dual`.
numThreads: int or "max", optional (default=1, i.e. OpenMP is not used)
If compiled with OpenMP, chooses the number of threads to parallelize.
"max" selects the highest number possible.
Returns
-------
gamma: array-like, shape (ns, nt)
Optimal transportation matrix for the given
parameters
log: dict, optional
If input log is true, a dictionary containing the
cost and dual variables and exit status
Examples
--------
Simple example with obvious solution. The function emd accepts lists and
perform automatic conversion to numpy arrays
>>> import ot
>>> a=[.5,.5]
>>> b=[.5,.5]
>>> M=[[0.,1.],[1.,0.]]
>>> ot.emd(a, b, M)
array([[0.5, 0. ],
[0. , 0.5]])
.. _references-emd:
References
----------
.. [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011,
December). Displacement interpolation using Lagrangian mass transport.
In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.
See Also
--------
ot.bregman.sinkhorn : Entropic regularized OT
ot.optim.cg : General regularized OT
"""
# convert to numpy if list
a, b, M = list_to_array(a, b, M)
a0, b0, M0 = a, b, M
if len(a0) != 0:
type_as = a0
elif len(b0) != 0:
type_as = b0
else:
type_as = M0
nx = get_backend(M0, a0, b0)
# convert to numpy
M, a, b = nx.to_numpy(M, a, b)
# ensure float64
a = np.asarray(a, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
M = np.asarray(M, dtype=np.float64, order='C')
# if empty array given then use uniform distributions
if len(a) == 0:
a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0]
if len(b) == 0:
b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1]
assert (a.shape[0] == M.shape[0] and b.shape[0] == M.shape[1]), \
"Dimension mismatch, check dimensions of M with a and b"
# ensure that same mass
np.testing.assert_almost_equal(a.sum(0),
b.sum(0), err_msg='a and b vector must have the same sum')
b = b * a.sum() / b.sum()
asel = a != 0
bsel = b != 0
numThreads = check_number_threads(numThreads)
G, cost, u, v, result_code = emd_c(a, b, M, numItermax, numThreads)
if center_dual:
u, v = center_ot_dual(u, v, a, b)
if np.any(~asel) or np.any(~bsel):
u, v = estimate_dual_null_weights(u, v, a, b, M)
result_code_string = check_result(result_code)
if not nx.is_floating_point(type_as):
warnings.warn(
"Input histogram consists of integer. The transport plan will be "
"casted accordingly, possibly resulting in a loss of precision. "
"If this behaviour is unwanted, please make sure your input "
"histogram consists of floating point elements.",
stacklevel=2
)
if log:
log = {}
log['cost'] = cost
log['u'] = nx.from_numpy(u, type_as=type_as)
log['v'] = nx.from_numpy(v, type_as=type_as)
log['warning'] = result_code_string
log['result_code'] = result_code
return nx.from_numpy(G, type_as=type_as), log
return nx.from_numpy(G, type_as=type_as)
def emd2(a, b, M, processes=1,
numItermax=100000, log=False, return_matrix=False,
center_dual=True, numThreads=1):
r"""Solves the Earth Movers distance problem and returns the loss
.. math::
\min_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F
s.t. \ \gamma \mathbf{1} = \mathbf{a}
\gamma^T \mathbf{1} = \mathbf{b}
\gamma \geq 0
where :
- :math:`\mathbf{M}` is the metric cost matrix
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are the sample weights
.. note:: This function is backend-compatible and will work on arrays
from all compatible backends. But the algorithm uses the C++ CPU backend
which can lead to copy overhead on GPU arrays.
.. note:: This function will cast the computed transport plan and
transportation loss to the data type of the provided input with the
following priority: :math:`\mathbf{a}`, then :math:`\mathbf{b}`,
then :math:`\mathbf{M}` if marginals are not provided.
Casting to an integer tensor might result in a loss of precision.
If this behaviour is unwanted, please make sure to provide a
floating point input.
Uses the algorithm proposed in :ref:`[1] <references-emd2>`.
Parameters
----------
a : (ns,) array-like, float64
Source histogram (uniform weight if empty list)
b : (nt,) array-like, float64
Target histogram (uniform weight if empty list)
M : (ns,nt) array-like, float64
Loss matrix (for numpy c-order array with type float64)
processes : int, optional (default=1)
Nb of processes used for multiple emd computation (deprecated)
numItermax : int, optional (default=100000)
The maximum number of iterations before stopping the optimization
algorithm if it has not converged.
log: boolean, optional (default=False)
If True, returns a dictionary containing dual
variables. Otherwise returns only the optimal transportation cost.
return_matrix: boolean, optional (default=False)
If True, returns the optimal transportation matrix in the log.
center_dual: boolean, optional (default=True)
If True, centers the dual potential using function
:ref:`center_ot_dual`.
numThreads: int or "max", optional (default=1, i.e. OpenMP is not used)
If compiled with OpenMP, chooses the number of threads to parallelize.
"max" selects the highest number possible.
Returns
-------
W: float, array-like
Optimal transportation loss for the given parameters
log: dict
If input log is true, a dictionary containing dual
variables and exit status
Examples
--------
Simple example with obvious solution. The function emd accepts lists and
perform automatic conversion to numpy arrays
>>> import ot
>>> a=[.5,.5]
>>> b=[.5,.5]
>>> M=[[0.,1.],[1.,0.]]
>>> ot.emd2(a,b,M)
0.0
.. _references-emd2:
References
----------
.. [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W.
(2011, December). Displacement interpolation using Lagrangian mass
transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p.
158). ACM.
See Also
--------
ot.bregman.sinkhorn : Entropic regularized OT
ot.optim.cg : General regularized OT
"""
a, b, M = list_to_array(a, b, M)
a0, b0, M0 = a, b, M
if len(a0) != 0:
type_as = a0
elif len(b0) != 0:
type_as = b0
else:
type_as = M0
nx = get_backend(M0, a0, b0)
# convert to numpy
M, a, b = nx.to_numpy(M, a, b)
a = np.asarray(a, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
M = np.asarray(M, dtype=np.float64, order='C')
# if empty array given then use uniform distributions
if len(a) == 0:
a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0]
if len(b) == 0:
b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1]
assert (a.shape[0] == M.shape[0] and b.shape[0] == M.shape[1]), \
"Dimension mismatch, check dimensions of M with a and b"
asel = a != 0
numThreads = check_number_threads(numThreads)
if log or return_matrix:
def f(b):
bsel = b != 0
G, cost, u, v, result_code = emd_c(a, b, M, numItermax, numThreads)
if center_dual:
u, v = center_ot_dual(u, v, a, b)
if np.any(~asel) or np.any(~bsel):
u, v = estimate_dual_null_weights(u, v, a, b, M)
result_code_string = check_result(result_code)
log = {}
if not nx.is_floating_point(type_as):
warnings.warn(
"Input histogram consists of integer. The transport plan will be "
"casted accordingly, possibly resulting in a loss of precision. "
"If this behaviour is unwanted, please make sure your input "
"histogram consists of floating point elements.",
stacklevel=2
)
G = nx.from_numpy(G, type_as=type_as)
if return_matrix:
log['G'] = G
log['u'] = nx.from_numpy(u, type_as=type_as)
log['v'] = nx.from_numpy(v, type_as=type_as)
log['warning'] = result_code_string
log['result_code'] = result_code
cost = nx.set_gradients(nx.from_numpy(cost, type_as=type_as),
(a0, b0, M0), (log['u'] - nx.mean(log['u']),
log['v'] - nx.mean(log['v']), G))
return [cost, log]
else:
def f(b):
bsel = b != 0
G, cost, u, v, result_code = emd_c(a, b, M, numItermax, numThreads)
if center_dual:
u, v = center_ot_dual(u, v, a, b)
if np.any(~asel) or np.any(~bsel):
u, v = estimate_dual_null_weights(u, v, a, b, M)
if not nx.is_floating_point(type_as):
warnings.warn(
"Input histogram consists of integer. The transport plan will be "
"casted accordingly, possibly resulting in a loss of precision. "
"If this behaviour is unwanted, please make sure your input "
"histogram consists of floating point elements.",
stacklevel=2
)
G = nx.from_numpy(G, type_as=type_as)
cost = nx.set_gradients(nx.from_numpy(cost, type_as=type_as),
(a0, b0, M0), (nx.from_numpy(u - np.mean(u), type_as=type_as),
nx.from_numpy(v - np.mean(v), type_as=type_as), G))
check_result(result_code)
return cost
if len(b.shape) == 1:
return f(b)
nb = b.shape[1]
if processes > 1:
warnings.warn(
"The 'processes' parameter has been deprecated. "
"Multiprocessing should be done outside of POT."
)
res = list(map(f, [b[:, i].copy() for i in range(nb)]))
return res
def free_support_barycenter(measures_locations, measures_weights, X_init, b=None, weights=None, numItermax=100,
stopThr=1e-7, verbose=False, log=None, numThreads=1):
r"""
Solves the free support (locations of the barycenters are optimized, not the weights) Wasserstein barycenter problem (i.e. the weighted Frechet mean for the 2-Wasserstein distance), formally:
.. math::
\min_\mathbf{X} \quad \sum_{i=1}^N w_i W_2^2(\mathbf{b}, \mathbf{X}, \mathbf{a}_i, \mathbf{X}_i)
where :
- :math:`w \in \mathbb{(0, 1)}^{N}`'s are the barycenter weights and sum to one
- the :math:`\mathbf{a}_i \in \mathbb{R}^{k_i}` are the empirical measures weights and sum to one for each :math:`i`
- the :math:`\mathbf{X}_i \in \mathbb{R}^{k_i, d}` are the empirical measures atoms locations
- :math:`\mathbf{b} \in \mathbb{R}^{k}` is the desired weights vector of the barycenter
This problem is considered in :ref:`[1] <references-free-support-barycenter>` (Algorithm 2).
There are two differences with the following codes:
- we do not optimize over the weights
- we do not do line search for the locations updates, we use i.e. :math:`\theta = 1` in
:ref:`[1] <references-free-support-barycenter>` (Algorithm 2). This can be seen as a discrete
implementation of the fixed-point algorithm of
:ref:`[2] <references-free-support-barycenter>` proposed in the continuous setting.
Parameters
----------
measures_locations : list of N (k_i,d) array-like
The discrete support of a measure supported on :math:`k_i` locations of a `d`-dimensional space
(:math:`k_i` can be different for each element of the list)
measures_weights : list of N (k_i,) array-like
Numpy arrays where each numpy array has :math:`k_i` non-negatives values summing to one
representing the weights of each discrete input measure
X_init : (k,d) array-like
Initialization of the support locations (on `k` atoms) of the barycenter
b : (k,) array-like
Initialization of the weights of the barycenter (non-negatives, sum to 1)
weights : (N,) array-like
Initialization of the coefficients of the barycenter (non-negatives, sum to 1)
numItermax : int, optional
Max number of iterations
stopThr : float, optional
Stop threshold on error (>0)
verbose : bool, optional
Print information along iterations
log : bool, optional
record log if True
numThreads: int or "max", optional (default=1, i.e. OpenMP is not used)
If compiled with OpenMP, chooses the number of threads to parallelize.
"max" selects the highest number possible.
Returns
-------
X : (k,d) array-like
Support locations (on k atoms) of the barycenter
.. _references-free-support-barycenter:
References
----------
.. [1] Cuturi, Marco, and Arnaud Doucet. "Fast computation of Wasserstein barycenters." International Conference on Machine Learning. 2014.
.. [2] Álvarez-Esteban, Pedro C., et al. "A fixed-point approach to barycenters in Wasserstein space." Journal of Mathematical Analysis and Applications 441.2 (2016): 744-762.
"""
nx = get_backend(*measures_locations,*measures_weights,X_init)
iter_count = 0
N = len(measures_locations)
k = X_init.shape[0]
d = X_init.shape[1]
if b is None:
b = nx.ones((k,),type_as=X_init) / k
if weights is None:
weights = nx.ones((N,),type_as=X_init) / N
X = X_init
log_dict = {}
displacement_square_norms = []
displacement_square_norm = stopThr + 1.
while (displacement_square_norm > stopThr and iter_count < numItermax):
T_sum = nx.zeros((k, d),type_as=X_init)
for (measure_locations_i, measure_weights_i, weight_i) in zip(measures_locations, measures_weights, weights):
M_i = dist(X, measure_locations_i)
T_i = emd(b, measure_weights_i, M_i, numThreads=numThreads)
T_sum = T_sum + weight_i * 1. / b[:,None] * nx.dot(T_i, measure_locations_i)
displacement_square_norm = nx.sum((T_sum - X)**2)
if log:
displacement_square_norms.append(displacement_square_norm)
X = T_sum
if verbose:
print('iteration %d, displacement_square_norm=%f\n', iter_count, displacement_square_norm)
iter_count += 1
if log:
log_dict['displacement_square_norms'] = displacement_square_norms
return X, log_dict
else:
return X
|