1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
# -*- coding: utf-8 -*-
"""
Exact solvers for the 1D Wasserstein distance using cvxopt
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
# Author: Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License
import numpy as np
import warnings
from .emd_wrap import emd_1d_sorted
from ..backend import get_backend
from ..utils import list_to_array
def quantile_function(qs, cws, xs):
r""" Computes the quantile function of an empirical distribution
Parameters
----------
qs: array-like, shape (n,)
Quantiles at which the quantile function is evaluated
cws: array-like, shape (m, ...)
cumulative weights of the 1D empirical distribution, if batched, must be similar to xs
xs: array-like, shape (n, ...)
locations of the 1D empirical distribution, batched against the `xs.ndim - 1` first dimensions
Returns
-------
q: array-like, shape (..., n)
The quantiles of the distribution
"""
nx = get_backend(qs, cws)
n = xs.shape[0]
if nx.__name__ == 'torch':
# this is to ensure the best performance for torch searchsorted
# and avoid a warninng related to non-contiguous arrays
cws = cws.T.contiguous()
qs = qs.T.contiguous()
else:
cws = cws.T
qs = qs.T
idx = nx.searchsorted(cws, qs).T
return nx.take_along_axis(xs, nx.clip(idx, 0, n - 1), axis=0)
def wasserstein_1d(u_values, v_values, u_weights=None, v_weights=None, p=1, require_sort=True):
r"""
Computes the 1 dimensional OT loss [15] between two (batched) empirical
distributions
.. math:
OT_{loss} = \int_0^1 |cdf_u^{-1}(q) cdf_v^{-1}(q)|^p dq
It is formally the p-Wasserstein distance raised to the power p.
We do so in a vectorized way by first building the individual quantile functions then integrating them.
This function should be preferred to `emd_1d` whenever the backend is
different to numpy, and when gradients over
either sample positions or weights are required.
Parameters
----------
u_values: array-like, shape (n, ...)
locations of the first empirical distribution
v_values: array-like, shape (m, ...)
locations of the second empirical distribution
u_weights: array-like, shape (n, ...), optional
weights of the first empirical distribution, if None then uniform weights are used
v_weights: array-like, shape (m, ...), optional
weights of the second empirical distribution, if None then uniform weights are used
p: int, optional
order of the ground metric used, should be at least 1 (see [2, Chap. 2], default is 1
require_sort: bool, optional
sort the distributions atoms locations, if False we will consider they have been sorted prior to being passed to
the function, default is True
Returns
-------
cost: float/array-like, shape (...)
the batched EMD
References
----------
.. [15] Peyré, G., & Cuturi, M. (2018). Computational Optimal Transport.
"""
assert p >= 1, "The OT loss is only valid for p>=1, {p} was given".format(p=p)
if u_weights is not None and v_weights is not None:
nx = get_backend(u_values, v_values, u_weights, v_weights)
else:
nx = get_backend(u_values, v_values)
n = u_values.shape[0]
m = v_values.shape[0]
if u_weights is None:
u_weights = nx.full(u_values.shape, 1. / n, type_as=u_values)
elif u_weights.ndim != u_values.ndim:
u_weights = nx.repeat(u_weights[..., None], u_values.shape[-1], -1)
if v_weights is None:
v_weights = nx.full(v_values.shape, 1. / m, type_as=v_values)
elif v_weights.ndim != v_values.ndim:
v_weights = nx.repeat(v_weights[..., None], v_values.shape[-1], -1)
if require_sort:
u_sorter = nx.argsort(u_values, 0)
u_values = nx.take_along_axis(u_values, u_sorter, 0)
v_sorter = nx.argsort(v_values, 0)
v_values = nx.take_along_axis(v_values, v_sorter, 0)
u_weights = nx.take_along_axis(u_weights, u_sorter, 0)
v_weights = nx.take_along_axis(v_weights, v_sorter, 0)
u_cumweights = nx.cumsum(u_weights, 0)
v_cumweights = nx.cumsum(v_weights, 0)
qs = nx.sort(nx.concatenate((u_cumweights, v_cumweights), 0), 0)
u_quantiles = quantile_function(qs, u_cumweights, u_values)
v_quantiles = quantile_function(qs, v_cumweights, v_values)
qs = nx.zero_pad(qs, pad_width=[(1, 0)] + (qs.ndim - 1) * [(0, 0)])
delta = qs[1:, ...] - qs[:-1, ...]
diff_quantiles = nx.abs(u_quantiles - v_quantiles)
if p == 1:
return nx.sum(delta * nx.abs(diff_quantiles), axis=0)
return nx.sum(delta * nx.power(diff_quantiles, p), axis=0)
def emd_1d(x_a, x_b, a=None, b=None, metric='sqeuclidean', p=1., dense=True,
log=False):
r"""Solves the Earth Movers distance problem between 1d measures and returns
the OT matrix
.. math::
\gamma = arg\min_\gamma \sum_i \sum_j \gamma_{ij} d(x_a[i], x_b[j])
s.t. \gamma 1 = a,
\gamma^T 1= b,
\gamma\geq 0
where :
- d is the metric
- x_a and x_b are the samples
- a and b are the sample weights
When 'minkowski' is used as a metric, :math:`d(x, y) = |x - y|^p`.
Uses the algorithm detailed in [1]_
Parameters
----------
x_a : (ns,) or (ns, 1) ndarray, float64
Source dirac locations (on the real line)
x_b : (nt,) or (ns, 1) ndarray, float64
Target dirac locations (on the real line)
a : (ns,) ndarray, float64, optional
Source histogram (default is uniform weight)
b : (nt,) ndarray, float64, optional
Target histogram (default is uniform weight)
metric: str, optional (default='sqeuclidean')
Metric to be used. Only strings listed in :func:`ot.dist` are accepted.
Due to implementation details, this function runs faster when
`'sqeuclidean'`, `'cityblock'`, or `'euclidean'` metrics are used.
p: float, optional (default=1.0)
The p-norm to apply for if metric='minkowski'
dense: boolean, optional (default=True)
If True, returns math:`\gamma` as a dense ndarray of shape (ns, nt).
Otherwise returns a sparse representation using scipy's `coo_matrix`
format. Due to implementation details, this function runs faster when
`'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'` metrics
are used.
log: boolean, optional (default=False)
If True, returns a dictionary containing the cost.
Otherwise returns only the optimal transportation matrix.
Returns
-------
gamma: (ns, nt) ndarray
Optimal transportation matrix for the given parameters
log: dict
If input log is True, a dictionary containing the cost
Examples
--------
Simple example with obvious solution. The function emd_1d accepts lists and
performs automatic conversion to numpy arrays
>>> import ot
>>> a=[.5, .5]
>>> b=[.5, .5]
>>> x_a = [2., 0.]
>>> x_b = [0., 3.]
>>> ot.emd_1d(x_a, x_b, a, b)
array([[0. , 0.5],
[0.5, 0. ]])
>>> ot.emd_1d(x_a, x_b)
array([[0. , 0.5],
[0.5, 0. ]])
References
----------
.. [1] Peyré, G., & Cuturi, M. (2017). "Computational Optimal
Transport", 2018.
See Also
--------
ot.lp.emd : EMD for multidimensional distributions
ot.lp.emd2_1d : EMD for 1d distributions (returns cost instead of the
transportation matrix)
"""
a, b, x_a, x_b = list_to_array(a, b, x_a, x_b)
nx = get_backend(x_a, x_b)
assert (x_a.ndim == 1 or x_a.ndim == 2 and x_a.shape[1] == 1), \
"emd_1d should only be used with monodimensional data"
assert (x_b.ndim == 1 or x_b.ndim == 2 and x_b.shape[1] == 1), \
"emd_1d should only be used with monodimensional data"
# if empty array given then use uniform distributions
if a is None or a.ndim == 0 or len(a) == 0:
a = nx.ones((x_a.shape[0],), type_as=x_a) / x_a.shape[0]
if b is None or b.ndim == 0 or len(b) == 0:
b = nx.ones((x_b.shape[0],), type_as=x_b) / x_b.shape[0]
# ensure that same mass
np.testing.assert_almost_equal(
nx.to_numpy(nx.sum(a, axis=0)),
nx.to_numpy(nx.sum(b, axis=0)),
err_msg='a and b vector must have the same sum'
)
b = b * nx.sum(a) / nx.sum(b)
x_a_1d = nx.reshape(x_a, (-1,))
x_b_1d = nx.reshape(x_b, (-1,))
perm_a = nx.argsort(x_a_1d)
perm_b = nx.argsort(x_b_1d)
G_sorted, indices, cost = emd_1d_sorted(
nx.to_numpy(a[perm_a]).astype(np.float64),
nx.to_numpy(b[perm_b]).astype(np.float64),
nx.to_numpy(x_a_1d[perm_a]).astype(np.float64),
nx.to_numpy(x_b_1d[perm_b]).astype(np.float64),
metric=metric, p=p
)
G = nx.coo_matrix(
G_sorted,
perm_a[indices[:, 0]],
perm_b[indices[:, 1]],
shape=(a.shape[0], b.shape[0]),
type_as=x_a
)
if dense:
G = nx.todense(G)
elif str(nx) == "jax":
warnings.warn("JAX does not support sparse matrices, converting to dense")
if log:
log = {'cost': nx.from_numpy(cost, type_as=x_a)}
return G, log
return G
def emd2_1d(x_a, x_b, a=None, b=None, metric='sqeuclidean', p=1., dense=True,
log=False):
r"""Solves the Earth Movers distance problem between 1d measures and returns
the loss
.. math::
\gamma = arg\min_\gamma \sum_i \sum_j \gamma_{ij} d(x_a[i], x_b[j])
s.t. \gamma 1 = a,
\gamma^T 1= b,
\gamma\geq 0
where :
- d is the metric
- x_a and x_b are the samples
- a and b are the sample weights
When 'minkowski' is used as a metric, :math:`d(x, y) = |x - y|^p`.
Uses the algorithm detailed in [1]_
Parameters
----------
x_a : (ns,) or (ns, 1) ndarray, float64
Source dirac locations (on the real line)
x_b : (nt,) or (ns, 1) ndarray, float64
Target dirac locations (on the real line)
a : (ns,) ndarray, float64, optional
Source histogram (default is uniform weight)
b : (nt,) ndarray, float64, optional
Target histogram (default is uniform weight)
metric: str, optional (default='sqeuclidean')
Metric to be used. Only strings listed in :func:`ot.dist` are accepted.
Due to implementation details, this function runs faster when
`'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'` metrics
are used.
p: float, optional (default=1.0)
The p-norm to apply for if metric='minkowski'
dense: boolean, optional (default=True)
If True, returns math:`\gamma` as a dense ndarray of shape (ns, nt).
Otherwise returns a sparse representation using scipy's `coo_matrix`
format. Only used if log is set to True. Due to implementation details,
this function runs faster when dense is set to False.
log: boolean, optional (default=False)
If True, returns a dictionary containing the transportation matrix.
Otherwise returns only the loss.
Returns
-------
loss: float
Cost associated to the optimal transportation
log: dict
If input log is True, a dictionary containing the Optimal transportation
matrix for the given parameters
Examples
--------
Simple example with obvious solution. The function emd2_1d accepts lists and
performs automatic conversion to numpy arrays
>>> import ot
>>> a=[.5, .5]
>>> b=[.5, .5]
>>> x_a = [2., 0.]
>>> x_b = [0., 3.]
>>> ot.emd2_1d(x_a, x_b, a, b)
0.5
>>> ot.emd2_1d(x_a, x_b)
0.5
References
----------
.. [1] Peyré, G., & Cuturi, M. (2017). "Computational Optimal
Transport", 2018.
See Also
--------
ot.lp.emd2 : EMD for multidimensional distributions
ot.lp.emd_1d : EMD for 1d distributions (returns the transportation matrix
instead of the cost)
"""
# If we do not return G (log==False), then we should not to cast it to dense
# (useless overhead)
G, log_emd = emd_1d(x_a=x_a, x_b=x_b, a=a, b=b, metric=metric, p=p,
dense=dense and log, log=True)
cost = log_emd['cost']
if log:
log_emd = {'G': G}
return cost, log_emd
return cost
|