1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
"""
Stochastic solvers for regularized OT.
"""
# Authors: Kilian Fatras <kilian.fatras@gmail.com>
# Rémi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License
import numpy as np
from .utils import dist
from .backend import get_backend
##############################################################################
# Optimization toolbox for SEMI - DUAL problems
##############################################################################
def coordinate_grad_semi_dual(b, M, reg, beta, i):
r'''
Compute the coordinate gradient update for regularized discrete distributions for :math:`(i, :)`
The function computes the gradient of the semi dual problem:
.. math::
\max_\mathbf{v} \ \sum_i \mathbf{a}_i \left[ \sum_j \mathbf{v}_j \mathbf{b}_j - \mathrm{reg}
\cdot \log \left( \sum_j \mathbf{b}_j
\exp \left( \frac{\mathbf{v}_j - \mathbf{M}_{i,j}}{\mathrm{reg}}
\right) \right) \right]
Where :
- :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
- :math:`\mathbf{v}` is a dual variable in :math:`\mathbb{R}^{nt}`
- reg is the regularization term
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)
The algorithm used for solving the problem is the ASGD & SAG algorithms
as proposed in :ref:`[18] <references-coordinate-grad-semi-dual>` [alg.1 & alg.2]
Parameters
----------
b : ndarray, shape (nt,)
Target measure.
M : ndarray, shape (ns, nt)
Cost matrix.
reg : float
Regularization term > 0.
v : ndarray, shape (nt,)
Dual variable.
i : int
Picked number `i`.
Returns
-------
coordinate gradient : ndarray, shape (nt,)
Examples
--------
>>> import ot
>>> np.random.seed(0)
>>> n_source = 7
>>> n_target = 4
>>> a = ot.utils.unif(n_source)
>>> b = ot.utils.unif(n_target)
>>> X_source = np.random.randn(n_source, 2)
>>> Y_target = np.random.randn(n_target, 2)
>>> M = ot.dist(X_source, Y_target)
>>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
[1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
[3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
[2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
[9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
[2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
[4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
.. _references-coordinate-grad-semi-dual:
References
----------
.. [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) Stochastic Optimization for Large-scale Optimal Transport. Advances in Neural Information Processing Systems (2016).
'''
r = M[i, :] - beta
exp_beta = np.exp(-r / reg) * b
khi = exp_beta / (np.sum(exp_beta))
return b - khi
def sag_entropic_transport(a, b, M, reg, numItermax=10000, lr=None):
r"""
Compute the SAG algorithm to solve the regularized discrete measures optimal transport max problem
The function solves the following optimization problem:
.. math::
\gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
\mathrm{reg} \cdot\Omega(\gamma)
s.t. \ \gamma \mathbf{1} = \mathbf{a}
\gamma^T \mathbf{1} = \mathbf{b}
\gamma \geq 0
Where :
- :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
- :math:`\Omega` is the entropic regularization term with :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)
The algorithm used for solving the problem is the SAG algorithm
as proposed in :ref:`[18] <references-sag-entropic-transport>` [alg.1]
Parameters
----------
a : ndarray, shape (ns,),
Source measure.
b : ndarray, shape (nt,),
Target measure.
M : ndarray, shape (ns, nt),
Cost matrix.
reg : float
Regularization term > 0
numItermax : int
Number of iteration.
lr : float
Learning rate.
Returns
-------
v : ndarray, shape (`nt`,)
Dual variable.
Examples
--------
>>> import ot
>>> np.random.seed(0)
>>> n_source = 7
>>> n_target = 4
>>> a = ot.utils.unif(n_source)
>>> b = ot.utils.unif(n_target)
>>> X_source = np.random.randn(n_source, 2)
>>> Y_target = np.random.randn(n_target, 2)
>>> M = ot.dist(X_source, Y_target)
>>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
[1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
[3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
[2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
[9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
[2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
[4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
.. _references-sag-entropic-transport:
References
----------
.. [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) Stochastic Optimization for Large-scale Optimal Transport. Advances in Neural Information Processing Systems (2016).
"""
if lr is None:
lr = 1. / max(a / reg)
n_source = np.shape(M)[0]
n_target = np.shape(M)[1]
cur_beta = np.zeros(n_target)
stored_gradient = np.zeros((n_source, n_target))
sum_stored_gradient = np.zeros(n_target)
for _ in range(numItermax):
i = np.random.randint(n_source)
cur_coord_grad = a[i] * coordinate_grad_semi_dual(b, M, reg,
cur_beta, i)
sum_stored_gradient += (cur_coord_grad - stored_gradient[i])
stored_gradient[i] = cur_coord_grad
cur_beta += lr * (1. / n_source) * sum_stored_gradient
return cur_beta
def averaged_sgd_entropic_transport(a, b, M, reg, numItermax=300000, lr=None):
r'''
Compute the ASGD algorithm to solve the regularized semi continous measures optimal transport max problem
The function solves the following optimization problem:
.. math::
\gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
\mathrm{reg}\cdot\Omega(\gamma)
s.t. \gamma \mathbf{1} = \mathbf{a}
\gamma^T \mathbf{1} = \mathbf{b}
\gamma \geq 0
Where :
- :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
- :math:`\Omega` is the entropic regularization term with :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)
The algorithm used for solving the problem is the ASGD algorithm
as proposed in :ref:`[18] <references-averaged-sgd-entropic-transport>` [alg.2]
Parameters
----------
b : ndarray, shape (nt,)
target measure
M : ndarray, shape (ns, nt)
cost matrix
reg : float
Regularization term > 0
numItermax : int
Number of iteration.
lr : float
Learning rate.
Returns
-------
ave_v : ndarray, shape (`nt`,)
dual variable
Examples
--------
>>> import ot
>>> np.random.seed(0)
>>> n_source = 7
>>> n_target = 4
>>> a = ot.utils.unif(n_source)
>>> b = ot.utils.unif(n_target)
>>> X_source = np.random.randn(n_source, 2)
>>> Y_target = np.random.randn(n_target, 2)
>>> M = ot.dist(X_source, Y_target)
>>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
[1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
[3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
[2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
[9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
[2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
[4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
.. _references-averaged-sgd-entropic-transport:
References
----------
.. [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) Stochastic Optimization for Large-scale Optimal Transport. Advances in Neural Information Processing Systems (2016).
'''
if lr is None:
lr = 1. / max(a / reg)
n_source = np.shape(M)[0]
n_target = np.shape(M)[1]
cur_beta = np.zeros(n_target)
ave_beta = np.zeros(n_target)
for cur_iter in range(numItermax):
k = cur_iter + 1
i = np.random.randint(n_source)
cur_coord_grad = coordinate_grad_semi_dual(b, M, reg, cur_beta, i)
cur_beta += (lr / np.sqrt(k)) * cur_coord_grad
ave_beta = (1. / k) * cur_beta + (1 - 1. / k) * ave_beta
return ave_beta
def c_transform_entropic(b, M, reg, beta):
r'''
The goal is to recover u from the c-transform.
The function computes the c-transform of a dual variable from the other
dual variable:
.. math::
\mathbf{u} = \mathbf{v}^{c,reg} = - \mathrm{reg} \sum_j \mathbf{b}_j
\exp\left( \frac{\mathbf{v} - \mathbf{M}}{\mathrm{reg}} \right)
Where :
- :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
- :math:`\mathbf{u}`, :math:`\mathbf{v}` are dual variables in :math:`\mathbb{R}^{ns} \times \mathbb{R}^{nt}`
- reg is the regularization term
It is used to recover an optimal u from optimal v solving the semi dual
problem, see Proposition 2.1 of :ref:`[18] <references-c-transform-entropic>`
Parameters
----------
b : ndarray, shape (nt,)
Target measure
M : ndarray, shape (ns, nt)
Cost matrix
reg : float
Regularization term > 0
v : ndarray, shape (nt,)
Dual variable.
Returns
-------
u : ndarray, shape (`ns`,)
Dual variable.
Examples
--------
>>> import ot
>>> np.random.seed(0)
>>> n_source = 7
>>> n_target = 4
>>> a = ot.utils.unif(n_source)
>>> b = ot.utils.unif(n_target)
>>> X_source = np.random.randn(n_source, 2)
>>> Y_target = np.random.randn(n_target, 2)
>>> M = ot.dist(X_source, Y_target)
>>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
[1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
[3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
[2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
[9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
[2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
[4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
.. _references-c-transform-entropic:
References
----------
.. [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) Stochastic Optimization for Large-scale Optimal Transport. Advances in Neural Information Processing Systems (2016).
'''
n_source = np.shape(M)[0]
alpha = np.zeros(n_source)
for i in range(n_source):
r = M[i, :] - beta
min_r = np.min(r)
exp_beta = np.exp(-(r - min_r) / reg) * b
alpha[i] = min_r - reg * np.log(np.sum(exp_beta))
return alpha
def solve_semi_dual_entropic(a, b, M, reg, method, numItermax=10000, lr=None,
log=False):
r'''
Compute the transportation matrix to solve the regularized discrete measures optimal transport max problem
The function solves the following optimization problem:
.. math::
\gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
\mathrm{reg} \cdot\Omega(\gamma)
s.t. \ \gamma \mathbf{1} = \mathbf{a}
\gamma^T \mathbf{1} = \mathbf{b}
\gamma \geq 0
Where :
- :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
- :math:`\Omega` is the entropic regularization term with :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)
The algorithm used for solving the problem is the SAG or ASGD algorithms
as proposed in :ref:`[18] <references-solve-semi-dual-entropic>`
Parameters
----------
a : ndarray, shape (ns,)
source measure
b : ndarray, shape (nt,)
target measure
M : ndarray, shape (ns, nt)
cost matrix
reg : float
Regularization term > 0
methode : str
used method (SAG or ASGD)
numItermax : int
number of iteration
lr : float
learning rate
n_source : int
size of the source measure
n_target : int
size of the target measure
log : bool, optional
record log if True
Returns
-------
pi : ndarray, shape (ns, nt)
transportation matrix
log : dict
log dictionary return only if log==True in parameters
Examples
--------
>>> import ot
>>> np.random.seed(0)
>>> n_source = 7
>>> n_target = 4
>>> a = ot.utils.unif(n_source)
>>> b = ot.utils.unif(n_target)
>>> X_source = np.random.randn(n_source, 2)
>>> Y_target = np.random.randn(n_target, 2)
>>> M = ot.dist(X_source, Y_target)
>>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
[1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
[3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
[2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
[9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
[2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
[4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
.. _references-solve-semi-dual-entropic:
References
----------
.. [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) Stochastic Optimization for Large-scale Optimal Transport. Advances in Neural Information Processing Systems (2016).
'''
if method.lower() == "sag":
opt_beta = sag_entropic_transport(a, b, M, reg, numItermax, lr)
elif method.lower() == "asgd":
opt_beta = averaged_sgd_entropic_transport(a, b, M, reg, numItermax, lr)
else:
print("Please, select your method between SAG and ASGD")
return None
opt_alpha = c_transform_entropic(b, M, reg, opt_beta)
pi = (np.exp((opt_alpha[:, None] + opt_beta[None, :] - M[:, :]) / reg) *
a[:, None] * b[None, :])
if log:
log = {}
log['alpha'] = opt_alpha
log['beta'] = opt_beta
return pi, log
else:
return pi
##############################################################################
# Optimization toolbox for DUAL problems
##############################################################################
def batch_grad_dual(a, b, M, reg, alpha, beta, batch_size, batch_alpha,
batch_beta):
r'''
Computes the partial gradient of the dual optimal transport problem.
For each :math:`(i,j)` in a batch of coordinates, the partial gradients are :
.. math::
\partial_{\mathbf{u}_i} F = \frac{b_s}{l_v} \mathbf{u}_i -
\sum_{j \in B_v} \mathbf{a}_i \mathbf{b}_j
\exp\left( \frac{\mathbf{u}_i + \mathbf{v}_j - \mathbf{M}_{i,j}}{\mathrm{reg}} \right)
\partial_{\mathbf{v}_j} F = \frac{b_s}{l_u} \mathbf{v}_j -
\sum_{i \in B_u} \mathbf{a}_i \mathbf{b}_j
\exp\left( \frac{\mathbf{u}_i + \mathbf{v}_j - \mathbf{M}_{i,j}}{\mathrm{reg}} \right)
Where :
- :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
- :math:`\mathbf{u}`, :math:`\mathbf{v}` are dual variables in :math:`\mathbb{R}^{ns} \times \mathbb{R}^{nt}`
- reg is the regularization term
- :math:`B_u` and :math:`B_v` are lists of index
- :math:`b_s` is the size of the batches :math:`B_u` and :math:`B_v`
- :math:`l_u` and :math:`l_v` are the lengths of :math:`B_u` and :math:`B_v`
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)
The algorithm used for solving the dual problem is the SGD algorithm
as proposed in :ref:`[19] <references-batch-grad-dual>` [alg.1]
Parameters
----------
a : ndarray, shape (ns,)
source measure
b : ndarray, shape (nt,)
target measure
M : ndarray, shape (ns, nt)
cost matrix
reg : float
Regularization term > 0
alpha : ndarray, shape (ns,)
dual variable
beta : ndarray, shape (nt,)
dual variable
batch_size : int
size of the batch
batch_alpha : ndarray, shape (bs,)
batch of index of alpha
batch_beta : ndarray, shape (bs,)
batch of index of beta
Returns
-------
grad : ndarray, shape (`ns`,)
partial grad F
Examples
--------
>>> import ot
>>> np.random.seed(0)
>>> n_source = 7
>>> n_target = 4
>>> a = ot.utils.unif(n_source)
>>> b = ot.utils.unif(n_target)
>>> X_source = np.random.randn(n_source, 2)
>>> Y_target = np.random.randn(n_target, 2)
>>> M = ot.dist(X_source, Y_target)
>>> sgd_dual_pi, log = ot.stochastic.solve_dual_entropic(a, b, M, reg=1, batch_size=3, numItermax=30000, lr=0.1, log=True)
>>> log['alpha']
array([0.71759102, 1.57057384, 0.85576566, 0.1208211 , 0.59190466,
1.197148 , 0.17805133])
>>> log['beta']
array([0.49741367, 0.57478564, 1.40075528, 2.75890102])
>>> sgd_dual_pi
array([[2.09730063e-02, 8.38169324e-02, 7.50365455e-03, 8.72731415e-09],
[5.58432437e-03, 5.89881299e-04, 3.09558411e-05, 8.35469849e-07],
[3.26489515e-03, 7.15536035e-02, 2.99778211e-02, 3.02601593e-10],
[4.05390622e-02, 5.31085068e-02, 6.65191787e-02, 1.55812785e-06],
[7.82299812e-02, 6.12099102e-03, 4.44989098e-02, 2.37719187e-03],
[5.06266486e-02, 2.16230494e-03, 2.26215141e-03, 6.81514609e-04],
[6.06713990e-02, 3.98139808e-02, 5.46829338e-02, 8.62371424e-06]])
.. _references-batch-grad-dual:
References
----------
.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
'''
G = - (np.exp((alpha[batch_alpha, None] + beta[None, batch_beta] -
M[batch_alpha, :][:, batch_beta]) / reg) *
a[batch_alpha, None] * b[None, batch_beta])
grad_beta = np.zeros(np.shape(M)[1])
grad_alpha = np.zeros(np.shape(M)[0])
grad_beta[batch_beta] = (b[batch_beta] * len(batch_alpha) / np.shape(M)[0]
+ G.sum(0))
grad_alpha[batch_alpha] = (a[batch_alpha] * len(batch_beta)
/ np.shape(M)[1] + G.sum(1))
return grad_alpha, grad_beta
def sgd_entropic_regularization(a, b, M, reg, batch_size, numItermax, lr):
r'''
Compute the sgd algorithm to solve the regularized discrete measures optimal transport dual problem
The function solves the following optimization problem:
.. math::
\gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
\mathrm{reg} \cdot\Omega(\gamma)
s.t. \ \gamma \mathbf{1} = \mathbf{a}
\gamma^T \mathbf{1} = \mathbf{b}
\gamma \geq 0
Where :
- :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
- :math:`\Omega` is the entropic regularization term with :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)
Parameters
----------
a : ndarray, shape (ns,)
source measure
b : ndarray, shape (nt,)
target measure
M : ndarray, shape (ns, nt)
cost matrix
reg : float
Regularization term > 0
batch_size : int
size of the batch
numItermax : int
number of iteration
lr : float
learning rate
Returns
-------
alpha : ndarray, shape (ns,)
dual variable
beta : ndarray, shape (nt,)
dual variable
Examples
--------
>>> import ot
>>> n_source = 7
>>> n_target = 4
>>> reg = 1
>>> numItermax = 20000
>>> lr = 0.1
>>> batch_size = 3
>>> log = True
>>> a = ot.utils.unif(n_source)
>>> b = ot.utils.unif(n_target)
>>> rng = np.random.RandomState(0)
>>> X_source = rng.randn(n_source, 2)
>>> Y_target = rng.randn(n_target, 2)
>>> M = ot.dist(X_source, Y_target)
>>> sgd_dual_pi, log = ot.stochastic.solve_dual_entropic(a, b, M, reg, batch_size, numItermax, lr, log)
>>> log['alpha']
array([0.64171798, 1.27932201, 0.78132257, 0.15638935, 0.54888354,
1.03663469, 0.20595781])
>>> log['beta']
array([0.51207194, 0.58033189, 1.28922676, 2.26859736])
>>> sgd_dual_pi
array([[1.97276541e-02, 7.81248547e-02, 6.22136048e-03, 4.95442423e-09],
[4.23494310e-03, 4.43286263e-04, 2.06927079e-05, 3.82389139e-07],
[3.07542414e-03, 6.67897769e-02, 2.48904999e-02, 1.72030247e-10],
[4.26271990e-02, 5.53375455e-02, 6.16535024e-02, 9.88812650e-07],
[7.60423265e-02, 5.89585256e-03, 3.81267087e-02, 1.39458256e-03],
[4.37557504e-02, 1.85189176e-03, 1.72335760e-03, 3.55491279e-04],
[6.33096109e-02, 4.11683954e-02, 5.02962051e-02, 5.43097516e-06]])
References
----------
.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
'''
n_source = np.shape(M)[0]
n_target = np.shape(M)[1]
cur_alpha = np.zeros(n_source)
cur_beta = np.zeros(n_target)
for cur_iter in range(numItermax):
k = np.sqrt(cur_iter + 1)
batch_alpha = np.random.choice(n_source, batch_size, replace=False)
batch_beta = np.random.choice(n_target, batch_size, replace=False)
update_alpha, update_beta = batch_grad_dual(a, b, M, reg, cur_alpha,
cur_beta, batch_size,
batch_alpha, batch_beta)
cur_alpha[batch_alpha] += (lr / k) * update_alpha[batch_alpha]
cur_beta[batch_beta] += (lr / k) * update_beta[batch_beta]
return cur_alpha, cur_beta
def solve_dual_entropic(a, b, M, reg, batch_size, numItermax=10000, lr=1,
log=False):
r'''
Compute the transportation matrix to solve the regularized discrete measures optimal transport dual problem
The function solves the following optimization problem:
.. math::
\gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
\mathrm{reg} \cdot\Omega(\gamma)
s.t. \ \gamma \mathbf{1} = \mathbf{a}
\gamma^T \mathbf{1} = \mathbf{b}
\gamma \geq 0
Where :
- :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix
- :math:`\Omega` is the entropic regularization term with :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1)
Parameters
----------
a : ndarray, shape (ns,)
source measure
b : ndarray, shape (nt,)
target measure
M : ndarray, shape (ns, nt)
cost matrix
reg : float
Regularization term > 0
batch_size : int
size of the batch
numItermax : int
number of iteration
lr : float
learning rate
log : bool, optional
record log if True
Returns
-------
pi : ndarray, shape (ns, nt)
transportation matrix
log : dict
log dictionary return only if log==True in parameters
Examples
--------
>>> import ot
>>> n_source = 7
>>> n_target = 4
>>> reg = 1
>>> numItermax = 20000
>>> lr = 0.1
>>> batch_size = 3
>>> log = True
>>> a = ot.utils.unif(n_source)
>>> b = ot.utils.unif(n_target)
>>> rng = np.random.RandomState(0)
>>> X_source = rng.randn(n_source, 2)
>>> Y_target = rng.randn(n_target, 2)
>>> M = ot.dist(X_source, Y_target)
>>> sgd_dual_pi, log = ot.stochastic.solve_dual_entropic(a, b, M, reg, batch_size, numItermax, lr, log)
>>> log['alpha']
array([0.64057733, 1.2683513 , 0.75610161, 0.16024284, 0.54926534,
1.0514201 , 0.19958936])
>>> log['beta']
array([0.51372571, 0.58843489, 1.27993921, 2.24344807])
>>> sgd_dual_pi
array([[1.97377795e-02, 7.86706853e-02, 6.15682001e-03, 4.82586997e-09],
[4.19566963e-03, 4.42016865e-04, 2.02777272e-05, 3.68823708e-07],
[3.00379244e-03, 6.56562018e-02, 2.40462171e-02, 1.63579656e-10],
[4.28626062e-02, 5.60031599e-02, 6.13193826e-02, 9.67977735e-07],
[7.61972739e-02, 5.94609051e-03, 3.77886693e-02, 1.36046648e-03],
[4.44810042e-02, 1.89476742e-03, 1.73285847e-03, 3.51826036e-04],
[6.30118293e-02, 4.12398660e-02, 4.95148998e-02, 5.26247246e-06]])
References
----------
.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
'''
opt_alpha, opt_beta = sgd_entropic_regularization(a, b, M, reg, batch_size,
numItermax, lr)
pi = (np.exp((opt_alpha[:, None] + opt_beta[None, :] - M[:, :]) / reg) *
a[:, None] * b[None, :])
if log:
log = {}
log['alpha'] = opt_alpha
log['beta'] = opt_beta
return pi, log
else:
return pi
################################################################################
# Losses for stochastic optimization
################################################################################
def loss_dual_entropic(u, v, xs, xt, reg=1, ws=None, wt=None, metric='sqeuclidean'):
r"""
Compute the dual loss of the entropic OT as in equation (6)-(7) of [19]
This loss is backend compatible and can be used for stochastic optimization
of the dual potentials. It can be used on the full dataset (beware of
memory) or on minibatches.
Parameters
----------
u : array-like, shape (ns,)
Source dual potential
v : array-like, shape (nt,)
Target dual potential
xs : array-like, shape (ns,d)
Source samples
xt : array-like, shape (ns,d)
Target samples
reg : float
Regularization term > 0 (default=1)
ws : array-like, shape (ns,), optional
Source sample weights (default unif)
wt : array-like, shape (ns,), optional
Target sample weights (default unif)
metric : string, callable
Ground metric for OT (default quadratic). Can be given as a callable
function taking (xs,xt) as parameters.
Returns
-------
dual_loss : array-like
Dual loss (to maximize)
References
----------
.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
"""
nx = get_backend(u, v, xs, xt)
if ws is None:
ws = nx.ones(xs.shape[0], type_as=xs) / xs.shape[0]
if wt is None:
wt = nx.ones(xt.shape[0], type_as=xt) / xt.shape[0]
if callable(metric):
M = metric(xs, xt)
else:
M = dist(xs, xt, metric=metric)
F = -reg * nx.exp((u[:, None] + v[None, :] - M) / reg)
return nx.sum(u * ws) + nx.sum(v * wt) + nx.sum(ws[:, None] * F * wt[None, :])
def plan_dual_entropic(u, v, xs, xt, reg=1, ws=None, wt=None, metric='sqeuclidean'):
r"""
Compute the primal OT plan the entropic OT as in equation (8) of [19]
This loss is backend compatible and can be used for stochastic optimization
of the dual potentials. It can be used on the full dataset (beware of
memory) or on minibatches.
Parameters
----------
u : array-like, shape (ns,)
Source dual potential
v : array-like, shape (nt,)
Target dual potential
xs : array-like, shape (ns,d)
Source samples
xt : array-like, shape (ns,d)
Target samples
reg : float
Regularization term > 0 (default=1)
ws : array-like, shape (ns,), optional
Source sample weights (default unif)
wt : array-like, shape (ns,), optional
Target sample weights (default unif)
metric : string, callable
Ground metric for OT (default quadratic). Can be given as a callable
function taking (xs,xt) as parameters.
Returns
-------
G : array-like
Primal OT plan
References
----------
.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
"""
nx = get_backend(u, v, xs, xt)
if ws is None:
ws = nx.ones(xs.shape[0], type_as=xs) / xs.shape[0]
if wt is None:
wt = nx.ones(xt.shape[0], type_as=xt) / xt.shape[0]
if callable(metric):
M = metric(xs, xt)
else:
M = dist(xs, xt, metric=metric)
H = nx.exp((u[:, None] + v[None, :] - M) / reg)
return ws[:, None] * H * wt[None, :]
def loss_dual_quadratic(u, v, xs, xt, reg=1, ws=None, wt=None, metric='sqeuclidean'):
r"""
Compute the dual loss of the quadratic regularized OT as in equation (6)-(7) of [19]
This loss is backend compatible and can be used for stochastic optimization
of the dual potentials. It can be used on the full dataset (beware of
memory) or on minibatches.
Parameters
----------
u : array-like, shape (ns,)
Source dual potential
v : array-like, shape (nt,)
Target dual potential
xs : array-like, shape (ns,d)
Source samples
xt : array-like, shape (ns,d)
Target samples
reg : float
Regularization term > 0 (default=1)
ws : array-like, shape (ns,), optional
Source sample weights (default unif)
wt : array-like, shape (ns,), optional
Target sample weights (default unif)
metric : string, callable
Ground metric for OT (default quadratic). Can be given as a callable
function taking (xs,xt) as parameters.
Returns
-------
dual_loss : array-like
Dual loss (to maximize)
References
----------
.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
"""
nx = get_backend(u, v, xs, xt)
if ws is None:
ws = nx.ones(xs.shape[0], type_as=xs) / xs.shape[0]
if wt is None:
wt = nx.ones(xt.shape[0], type_as=xt) / xt.shape[0]
if callable(metric):
M = metric(xs, xt)
else:
M = dist(xs, xt, metric=metric)
F = -1.0 / (4 * reg) * nx.maximum(u[:, None] + v[None, :] - M, 0.0)**2
return nx.sum(u * ws) + nx.sum(v * wt) + nx.sum(ws[:, None] * F * wt[None, :])
def plan_dual_quadratic(u, v, xs, xt, reg=1, ws=None, wt=None, metric='sqeuclidean'):
r"""
Compute the primal OT plan the quadratic regularized OT as in equation (8) of [19]
This loss is backend compatible and can be used for stochastic optimization
of the dual potentials. It can be used on the full dataset (beware of
memory) or on minibatches.
Parameters
----------
u : array-like, shape (ns,)
Source dual potential
v : array-like, shape (nt,)
Target dual potential
xs : array-like, shape (ns,d)
Source samples
xt : array-like, shape (ns,d)
Target samples
reg : float
Regularization term > 0 (default=1)
ws : array-like, shape (ns,), optional
Source sample weights (default unif)
wt : array-like, shape (ns,), optional
Target sample weights (default unif)
metric : string, callable
Ground metric for OT (default quadratic). Can be given as a callable
function taking (xs,xt) as parameters.
Returns
-------
G : array-like
Primal OT plan
References
----------
.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
"""
nx = get_backend(u, v, xs, xt)
if ws is None:
ws = nx.ones(xs.shape[0], type_as=xs) / xs.shape[0]
if wt is None:
wt = nx.ones(xt.shape[0], type_as=xt) / xt.shape[0]
if callable(metric):
M = metric(xs, xt)
else:
M = dist(xs, xt, metric=metric)
H = 1.0 / (2 * reg) * nx.maximum(u[:, None] + v[None, :] - M, 0.0)
return ws[:, None] * H * wt[None, :]
|