1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
"""Tests for module 1d Wasserstein solver"""
# Author: Adrien Corenflos <adrien.corenflos@aalto.fi>
# Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License
import numpy as np
import pytest
import ot
from ot.lp import wasserstein_1d
from ot.backend import get_backend_list, tf
from scipy.stats import wasserstein_distance
backend_list = get_backend_list()
def test_emd_1d_emd2_1d_with_weights():
# test emd1d gives similar results as emd
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.randn(n, 1)
v = rng.randn(m, 1)
w_u = rng.uniform(0., 1., n)
w_u = w_u / w_u.sum()
w_v = rng.uniform(0., 1., m)
w_v = w_v / w_v.sum()
M = ot.dist(u, v, metric='sqeuclidean')
G, log = ot.emd(w_u, w_v, M, log=True)
wass = log["cost"]
G_1d, log = ot.emd_1d(u, v, w_u, w_v, metric='sqeuclidean', log=True)
wass1d = log["cost"]
wass1d_emd2 = ot.emd2_1d(u, v, w_u, w_v, metric='sqeuclidean', log=False)
wass1d_euc = ot.emd2_1d(u, v, w_u, w_v, metric='euclidean', log=False)
# check loss is similar
np.testing.assert_allclose(wass, wass1d)
np.testing.assert_allclose(wass, wass1d_emd2)
# check loss is similar to scipy's implementation for Euclidean metric
wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)), w_u, w_v)
np.testing.assert_allclose(wass_sp, wass1d_euc)
# check constraints
np.testing.assert_allclose(w_u, G.sum(1))
np.testing.assert_allclose(w_v, G.sum(0))
@pytest.mark.parametrize('nx', backend_list)
def test_wasserstein_1d(nx):
from scipy.stats import wasserstein_distance
rng = np.random.RandomState(0)
n = 100
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
# test 1 : wasserstein_1d should be close to scipy W_1 implementation
np.testing.assert_almost_equal(wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1),
wasserstein_distance(x, x, rho_u, rho_v))
# test 2 : wasserstein_1d should be close to one when only translating the support
np.testing.assert_almost_equal(wasserstein_1d(xb, xb + 1, p=2),
1.)
# test 3 : arrays test
X = np.stack((np.linspace(0, 5, n), np.linspace(0, 5, n) * 10), -1)
Xb = nx.from_numpy(X)
res = wasserstein_1d(Xb, Xb, rho_ub, rho_vb, p=2)
np.testing.assert_almost_equal(100 * res[0], res[1], decimal=4)
def test_wasserstein_1d_type_devices(nx):
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v, type_as=tp)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_wasserstein_1d_device_tf():
if not tf:
return
nx = ot.backend.TensorflowBackend()
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
if len(tf.config.list_physical_devices('GPU')) > 0:
# Check that everything happens on the GPU
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
assert nx.dtype_device(res)[1].startswith("GPU")
def test_emd_1d_emd2_1d():
# test emd1d gives similar results as emd
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.randn(n, 1)
v = rng.randn(m, 1)
M = ot.dist(u, v, metric='sqeuclidean')
G, log = ot.emd([], [], M, log=True)
wass = log["cost"]
G_1d, log = ot.emd_1d(u, v, [], [], metric='sqeuclidean', log=True)
wass1d = log["cost"]
wass1d_emd2 = ot.emd2_1d(u, v, [], [], metric='sqeuclidean', log=False)
wass1d_euc = ot.emd2_1d(u, v, [], [], metric='euclidean', log=False)
# check loss is similar
np.testing.assert_allclose(wass, wass1d)
np.testing.assert_allclose(wass, wass1d_emd2)
# check loss is similar to scipy's implementation for Euclidean metric
wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)))
np.testing.assert_allclose(wass_sp, wass1d_euc)
# check constraints
np.testing.assert_allclose(np.ones((n,)) / n, G.sum(1))
np.testing.assert_allclose(np.ones((m,)) / m, G.sum(0))
# check G is similar
np.testing.assert_allclose(G, G_1d, atol=1e-15)
# check AssertionError is raised if called on non 1d arrays
u = np.random.randn(n, 2)
v = np.random.randn(m, 2)
with pytest.raises(AssertionError):
ot.emd_1d(u, v, [], [])
def test_emd1d_type_devices(nx):
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v, type_as=tp)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_emd1d_device_tf():
nx = ot.backend.TensorflowBackend()
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
if len(tf.config.list_physical_devices('GPU')) > 0:
# Check that everything happens on the GPU
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
assert nx.dtype_device(emd)[1].startswith("GPU")
|