1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
"""Tests for module sliced"""
# Author: Adrien Corenflos <adrien.corenflos@aalto.fi>
# Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License
import numpy as np
import pytest
import ot
from ot.sliced import get_random_projections
from ot.backend import tf
def test_get_random_projections():
rng = np.random.RandomState(0)
projections = get_random_projections(1000, 50, rng)
np.testing.assert_almost_equal(np.sum(projections ** 2, 0), 1.)
def test_sliced_same_dist():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
res = ot.sliced_wasserstein_distance(x, x, u, u, 10, seed=rng)
np.testing.assert_almost_equal(res, 0.)
def test_sliced_bad_shapes():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(n, 4)
u = ot.utils.unif(n)
with pytest.raises(ValueError):
_ = ot.sliced_wasserstein_distance(x, y, u, u, 10, seed=rng)
def test_sliced_log():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 4)
y = rng.randn(n, 4)
u = ot.utils.unif(n)
res, log = ot.sliced_wasserstein_distance(x, y, u, u, 10, p=1, seed=rng, log=True)
assert len(log) == 2
projections = log["projections"]
projected_emds = log["projected_emds"]
assert projections.shape[1] == len(projected_emds) == 10
for emd in projected_emds:
assert emd > 0
def test_sliced_different_dists():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
y = rng.randn(n, 2)
res = ot.sliced_wasserstein_distance(x, y, u, u, 10, seed=rng)
assert res > 0.
def test_1d_sliced_equals_emd():
n = 100
m = 120
rng = np.random.RandomState(0)
x = rng.randn(n, 1)
a = rng.uniform(0, 1, n)
a /= a.sum()
y = rng.randn(m, 1)
u = ot.utils.unif(m)
res = ot.sliced_wasserstein_distance(x, y, a, u, 10, seed=42)
expected = ot.emd2_1d(x.squeeze(), y.squeeze(), a, u)
np.testing.assert_almost_equal(res ** 2, expected)
def test_max_sliced_same_dist():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
res = ot.max_sliced_wasserstein_distance(x, x, u, u, 10, seed=rng)
np.testing.assert_almost_equal(res, 0.)
def test_max_sliced_different_dists():
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
u = ot.utils.unif(n)
y = rng.randn(n, 2)
res, log = ot.max_sliced_wasserstein_distance(x, y, u, u, 10, seed=rng, log=True)
assert res > 0.
def test_sliced_backend(nx):
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
n_projections = 20
xb, yb, Pb = nx.from_numpy(x, y, P)
val0 = ot.sliced_wasserstein_distance(x, y, projections=P)
val = ot.sliced_wasserstein_distance(xb, yb, n_projections=n_projections, seed=0)
val2 = ot.sliced_wasserstein_distance(xb, yb, n_projections=n_projections, seed=0)
assert val > 0
assert val == val2
valb = nx.to_numpy(ot.sliced_wasserstein_distance(xb, yb, projections=Pb))
assert np.allclose(val0, valb)
def test_sliced_backend_type_devices(nx):
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb, yb, Pb = nx.from_numpy(x, y, P, type_as=tp)
valb = ot.sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_sliced_backend_device_tf():
nx = ot.backend.TensorflowBackend()
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb, yb, Pb = nx.from_numpy(x, y, P)
valb = ot.sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
if len(tf.config.list_physical_devices('GPU')) > 0:
# Check that everything happens on the GPU
xb, yb, Pb = nx.from_numpy(x, y, P)
valb = ot.sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
assert nx.dtype_device(valb)[1].startswith("GPU")
def test_max_sliced_backend(nx):
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
n_projections = 20
xb, yb, Pb = nx.from_numpy(x, y, P)
val0 = ot.max_sliced_wasserstein_distance(x, y, projections=P)
val = ot.max_sliced_wasserstein_distance(xb, yb, n_projections=n_projections, seed=0)
val2 = ot.max_sliced_wasserstein_distance(xb, yb, n_projections=n_projections, seed=0)
assert val > 0
assert val == val2
valb = nx.to_numpy(ot.max_sliced_wasserstein_distance(xb, yb, projections=Pb))
assert np.allclose(val0, valb)
def test_max_sliced_backend_type_devices(nx):
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb, yb, Pb = nx.from_numpy(x, y, P, type_as=tp)
valb = ot.max_sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_max_sliced_backend_device_tf():
nx = ot.backend.TensorflowBackend()
n = 100
rng = np.random.RandomState(0)
x = rng.randn(n, 2)
y = rng.randn(2 * n, 2)
P = rng.randn(2, 20)
P = P / np.sqrt((P**2).sum(0, keepdims=True))
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb, yb, Pb = nx.from_numpy(x, y, P)
valb = ot.max_sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
if len(tf.config.list_physical_devices('GPU')) > 0:
# Check that everything happens on the GPU
xb, yb, Pb = nx.from_numpy(x, y, P)
valb = ot.max_sliced_wasserstein_distance(xb, yb, projections=Pb)
nx.assert_same_dtype_device(xb, valb)
assert nx.dtype_device(valb)[1].startswith("GPU")
|