1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
# -*- coding: utf-8 -*-
r"""
======================================================================
Dual OT solvers for entropic and quadratic regularized OT with Pytorch
======================================================================
"""
# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 3
import numpy as np
import matplotlib.pyplot as pl
import torch
import ot
import ot.plot
# %%
# Data generation
# ---------------
torch.manual_seed(1)
n_source_samples = 100
n_target_samples = 100
theta = 2 * np.pi / 20
noise_level = 0.1
Xs, ys = ot.datasets.make_data_classif("gaussrot", n_source_samples, nz=noise_level)
Xt, yt = ot.datasets.make_data_classif(
"gaussrot", n_target_samples, theta=theta, nz=noise_level
)
# one of the target mode changes its variance (no linear mapping)
Xt[yt == 2] *= 3
Xt = Xt + 4
# %%
# Plot data
# ---------
pl.figure(1, (10, 5))
pl.clf()
pl.scatter(Xs[:, 0], Xs[:, 1], marker="+", label="Source samples")
pl.scatter(Xt[:, 0], Xt[:, 1], marker="o", label="Target samples")
pl.legend(loc=0)
pl.title("Source and target distributions")
# %%
# Convert data to torch tensors
# -----------------------------
xs = torch.tensor(Xs)
xt = torch.tensor(Xt)
# %%
# Estimating dual variables for entropic OT
# -----------------------------------------
u = torch.randn(n_source_samples, requires_grad=True)
v = torch.randn(n_source_samples, requires_grad=True)
reg = 0.5
optimizer = torch.optim.Adam([u, v], lr=1)
# number of iteration
n_iter = 200
losses = []
for i in range(n_iter):
# generate noise samples
# minus because we maximize the dual loss
loss = -ot.stochastic.loss_dual_entropic(u, v, xs, xt, reg=reg)
losses.append(float(loss.detach()))
if i % 10 == 0:
print("Iter: {:3d}, loss={}".format(i, losses[-1]))
loss.backward()
optimizer.step()
optimizer.zero_grad()
pl.figure(2)
pl.plot(losses)
pl.grid()
pl.title("Dual objective (negative)")
pl.xlabel("Iterations")
Ge = ot.stochastic.plan_dual_entropic(u, v, xs, xt, reg=reg)
# %%
# Plot the estimated entropic OT plan
# -----------------------------------
pl.figure(3, (10, 5))
pl.clf()
ot.plot.plot2D_samples_mat(Xs, Xt, Ge.detach().numpy(), alpha=0.1)
pl.scatter(Xs[:, 0], Xs[:, 1], marker="+", label="Source samples", zorder=2)
pl.scatter(Xt[:, 0], Xt[:, 1], marker="o", label="Target samples", zorder=2)
pl.legend(loc=0)
pl.title("Source and target distributions")
# %%
# Estimating dual variables for quadratic OT
# ------------------------------------------
u = torch.randn(n_source_samples, requires_grad=True)
v = torch.randn(n_source_samples, requires_grad=True)
reg = 0.01
optimizer = torch.optim.Adam([u, v], lr=1)
# number of iteration
n_iter = 200
losses = []
for i in range(n_iter):
# generate noise samples
# minus because we maximize the dual loss
loss = -ot.stochastic.loss_dual_quadratic(u, v, xs, xt, reg=reg)
losses.append(float(loss.detach()))
if i % 10 == 0:
print("Iter: {:3d}, loss={}".format(i, losses[-1]))
loss.backward()
optimizer.step()
optimizer.zero_grad()
pl.figure(4)
pl.plot(losses)
pl.grid()
pl.title("Dual objective (negative)")
pl.xlabel("Iterations")
Gq = ot.stochastic.plan_dual_quadratic(u, v, xs, xt, reg=reg)
# %%
# Plot the estimated quadratic OT plan
# ------------------------------------
pl.figure(5, (10, 5))
pl.clf()
ot.plot.plot2D_samples_mat(Xs, Xt, Gq.detach().numpy(), alpha=0.1)
pl.scatter(Xs[:, 0], Xs[:, 1], marker="+", label="Source samples", zorder=2)
pl.scatter(Xt[:, 0], Xt[:, 1], marker="o", label="Target samples", zorder=2)
pl.legend(loc=0)
pl.title("OT plan with quadratic regularization")
|