1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
# -*- coding: utf-8 -*-
r"""
======================================================================
Continuous OT plan estimation with Pytorch
======================================================================
"""
# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 3
import numpy as np
import matplotlib.pyplot as pl
import torch
from torch import nn
import ot
import ot.plot
# %%
# Data generation
# ---------------
torch.manual_seed(42)
np.random.seed(42)
n_source_samples = 1000
n_target_samples = 1000
theta = 2 * np.pi / 20
noise_level = 0.1
Xs = np.random.randn(n_source_samples, 2) * 0.5
Xt = np.random.randn(n_target_samples, 2) * 2
# one of the target mode changes its variance (no linear mapping)
Xt = Xt + 4
# %%
# Plot data
# ---------
nvisu = 300
pl.figure(1, (5, 5))
pl.clf()
pl.scatter(Xs[:nvisu, 0], Xs[:nvisu, 1], marker="+", label="Source samples", alpha=0.5)
pl.scatter(Xt[:nvisu, 0], Xt[:nvisu, 1], marker="o", label="Target samples", alpha=0.5)
pl.legend(loc=0)
ax_bounds = pl.axis()
pl.title("Source and target distributions")
# %%
# Convert data to torch tensors
# -----------------------------
xs = torch.tensor(Xs)
xt = torch.tensor(Xt)
# %%
# Estimating deep dual variables for entropic OT
# ----------------------------------------------
torch.manual_seed(42)
# define the MLP model
class Potential(torch.nn.Module):
def __init__(self):
super(Potential, self).__init__()
self.fc1 = nn.Linear(2, 200)
self.fc2 = nn.Linear(200, 1)
self.relu = torch.nn.ReLU() # instead of Heaviside step fn
def forward(self, x):
output = self.fc1(x)
output = self.relu(output) # instead of Heaviside step fn
output = self.fc2(output)
return output.ravel()
u = Potential().double()
v = Potential().double()
reg = 1
optimizer = torch.optim.Adam(list(u.parameters()) + list(v.parameters()), lr=0.005)
# number of iteration
n_iter = 500
n_batch = 500
losses = []
for i in range(n_iter):
# generate noise samples
iperms = torch.randint(0, n_source_samples, (n_batch,))
ipermt = torch.randint(0, n_target_samples, (n_batch,))
xsi = xs[iperms]
xti = xt[ipermt]
# minus because we maximize the dual loss
loss = -ot.stochastic.loss_dual_entropic(u(xsi), v(xti), xsi, xti, reg=reg)
losses.append(float(loss.detach()))
if i % 10 == 0:
print("Iter: {:3d}, loss={}".format(i, losses[-1]))
loss.backward()
optimizer.step()
optimizer.zero_grad()
pl.figure(2)
pl.plot(losses)
pl.grid()
pl.title("Dual objective (negative)")
pl.xlabel("Iterations")
# %%
# Plot the density on target for a given source sample
# ----------------------------------------------------
nv = 100
xl = np.linspace(ax_bounds[0], ax_bounds[1], nv)
yl = np.linspace(ax_bounds[2], ax_bounds[3], nv)
XX, YY = np.meshgrid(xl, yl)
xg = np.concatenate((XX.ravel()[:, None], YY.ravel()[:, None]), axis=1)
wxg = np.exp(-((xg[:, 0] - 4) ** 2 + (xg[:, 1] - 4) ** 2) / (2 * 2))
wxg = wxg / np.sum(wxg)
xg = torch.tensor(xg)
wxg = torch.tensor(wxg)
pl.figure(4, (12, 4))
pl.clf()
pl.subplot(1, 3, 1)
iv = 2
Gg = ot.stochastic.plan_dual_entropic(
u(xs[iv : iv + 1, :]), v(xg), xs[iv : iv + 1, :], xg, reg=reg, wt=wxg
)
Gg = Gg.reshape((nv, nv)).detach().numpy()
pl.scatter(Xs[:nvisu, 0], Xs[:nvisu, 1], marker="+", zorder=2, alpha=0.05)
pl.scatter(Xt[:nvisu, 0], Xt[:nvisu, 1], marker="o", zorder=2, alpha=0.05)
pl.scatter(
Xs[iv : iv + 1, 0],
Xs[iv : iv + 1, 1],
s=100,
marker="+",
label="Source sample",
zorder=2,
alpha=1,
color="C0",
)
pl.pcolormesh(XX, YY, Gg, cmap="Greens", label="Density of transported source sample")
pl.legend(loc=0)
ax_bounds = pl.axis()
pl.title("Density of transported source sample")
pl.subplot(1, 3, 2)
iv = 3
Gg = ot.stochastic.plan_dual_entropic(
u(xs[iv : iv + 1, :]), v(xg), xs[iv : iv + 1, :], xg, reg=reg, wt=wxg
)
Gg = Gg.reshape((nv, nv)).detach().numpy()
pl.scatter(Xs[:nvisu, 0], Xs[:nvisu, 1], marker="+", zorder=2, alpha=0.05)
pl.scatter(Xt[:nvisu, 0], Xt[:nvisu, 1], marker="o", zorder=2, alpha=0.05)
pl.scatter(
Xs[iv : iv + 1, 0],
Xs[iv : iv + 1, 1],
s=100,
marker="+",
label="Source sample",
zorder=2,
alpha=1,
color="C0",
)
pl.pcolormesh(XX, YY, Gg, cmap="Greens", label="Density of transported source sample")
pl.legend(loc=0)
ax_bounds = pl.axis()
pl.title("Density of transported source sample")
pl.subplot(1, 3, 3)
iv = 6
Gg = ot.stochastic.plan_dual_entropic(
u(xs[iv : iv + 1, :]), v(xg), xs[iv : iv + 1, :], xg, reg=reg, wt=wxg
)
Gg = Gg.reshape((nv, nv)).detach().numpy()
pl.scatter(Xs[:nvisu, 0], Xs[:nvisu, 1], marker="+", zorder=2, alpha=0.05)
pl.scatter(Xt[:nvisu, 0], Xt[:nvisu, 1], marker="o", zorder=2, alpha=0.05)
pl.scatter(
Xs[iv : iv + 1, 0],
Xs[iv : iv + 1, 1],
s=100,
marker="+",
label="Source sample",
zorder=2,
alpha=1,
color="C0",
)
pl.pcolormesh(XX, YY, Gg, cmap="Greens", label="Density of transported source sample")
pl.legend(loc=0)
ax_bounds = pl.axis()
pl.title("Density of transported source sample")
|