1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
# -*- coding: utf-8 -*-
"""
=================================
Debiased Sinkhorn barycenter demo
=================================
This example illustrates the computation of the debiased Sinkhorn barycenter
as proposed in [37]_.
.. [37] Janati, H., Cuturi, M., Gramfort, A. Proceedings of the 37th
International Conference on Machine Learning, PMLR 119:4692-4701, 2020
"""
# Author: Hicham Janati <hicham.janati100@gmail.com>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 3
import os
from pathlib import Path
import numpy as np
import matplotlib.pyplot as plt
import ot
from ot.bregman import (
barycenter,
barycenter_debiased,
convolutional_barycenter2d,
convolutional_barycenter2d_debiased,
)
##############################################################################
# Debiased barycenter of 1D Gaussians
# ------------------------------------
# %% parameters
n = 100 # nb bins
# bin positions
x = np.arange(n, dtype=np.float64)
# Gaussian distributions
a1 = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std
a2 = ot.datasets.make_1D_gauss(n, m=60, s=8)
# creating matrix A containing all distributions
A = np.vstack((a1, a2)).T
n_distributions = A.shape[1]
# loss matrix + normalization
M = ot.utils.dist0(n)
M /= M.max()
# %% barycenter computation
alpha = 0.2 # 0<=alpha<=1
weights = np.array([1 - alpha, alpha])
epsilons = [5e-3, 1e-2, 5e-2]
bars = [barycenter(A, M, reg, weights) for reg in epsilons]
bars_debiased = [barycenter_debiased(A, M, reg, weights) for reg in epsilons]
labels = ["Sinkhorn barycenter", "Debiased barycenter"]
colors = ["indianred", "gold"]
f, axes = plt.subplots(
1, len(epsilons), tight_layout=True, sharey=True, figsize=(12, 4), num=1
)
for ax, eps, bar, bar_debiased in zip(axes, epsilons, bars, bars_debiased):
ax.plot(A[:, 0], color="k", ls="--", label="Input data", alpha=0.3)
ax.plot(A[:, 1], color="k", ls="--", alpha=0.3)
for data, label, color in zip([bar, bar_debiased], labels, colors):
ax.plot(data, color=color, label=label, lw=2)
ax.set_title(r"$\varepsilon = %.3f$" % eps)
plt.legend()
plt.show()
##############################################################################
# Debiased barycenter of 2D images
# ---------------------------------
this_file = os.path.realpath("__file__")
data_path = os.path.join(Path(this_file).parent.parent.parent, "data")
f1 = 1 - plt.imread(os.path.join(data_path, "heart.png"))[:, :, 2]
f2 = 1 - plt.imread(os.path.join(data_path, "duck.png"))[:, :, 2]
A = np.asarray([f1, f2]) + 1e-2
A /= A.sum(axis=(1, 2))[:, None, None]
##############################################################################
# Display the input images
fig, axes = plt.subplots(1, 2, figsize=(7, 4), num=2)
for ax, img in zip(axes, A):
ax.imshow(img, cmap="Greys")
ax.axis("off")
fig.tight_layout()
plt.show()
##############################################################################
# Barycenter computation and visualization
# ----------------------------------------
#
bars_sinkhorn, bars_debiased = [], []
epsilons = [5e-3, 7e-3, 1e-2]
for eps in epsilons:
bar = convolutional_barycenter2d(A, eps)
bar_debiased, log = convolutional_barycenter2d_debiased(A, eps, log=True)
bars_sinkhorn.append(bar)
bars_debiased.append(bar_debiased)
titles = ["Sinkhorn", "Debiased"]
all_bars = [bars_sinkhorn, bars_debiased]
fig, axes = plt.subplots(2, 3, figsize=(8, 6), num=3)
for jj, (method, ax_row, bars) in enumerate(zip(titles, axes, all_bars)):
for ii, (ax, img, eps) in enumerate(zip(ax_row, bars, epsilons)):
ax.imshow(img, cmap="Greys")
if jj == 0:
ax.set_title(r"$\varepsilon = %.3f$" % eps, fontsize=13)
ax.set_xticks([])
ax.set_yticks([])
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
if ii == 0:
ax.set_ylabel(method, fontsize=15)
fig.tight_layout()
plt.show()
|