1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
# -*- coding: utf-8 -*-
"""
=============================
OT for image color adaptation
=============================
This example presents a way of transferring colors between two images
with Optimal Transport as introduced in [6]
[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014).
Regularized discrete optimal transport.
SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
"""
# Authors: Remi Flamary <remi.flamary@unice.fr>
# Stanislas Chambon <stan.chambon@gmail.com>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 2
import os
from pathlib import Path
import numpy as np
from matplotlib import pyplot as plt
import ot
rng = np.random.RandomState(42)
def im2mat(img):
"""Converts an image to matrix (one pixel per line)"""
return img.reshape((img.shape[0] * img.shape[1], img.shape[2]))
def mat2im(X, shape):
"""Converts back a matrix to an image"""
return X.reshape(shape)
def minmax(img):
return np.clip(img, 0, 1)
##############################################################################
# Generate data
# -------------
# Loading images
this_file = os.path.realpath("__file__")
data_path = os.path.join(Path(this_file).parent.parent.parent, "data")
I1 = plt.imread(os.path.join(data_path, "ocean_day.jpg")).astype(np.float64) / 256
I2 = plt.imread(os.path.join(data_path, "ocean_sunset.jpg")).astype(np.float64) / 256
X1 = im2mat(I1)
X2 = im2mat(I2)
# training samples
nb = 500
idx1 = rng.randint(X1.shape[0], size=(nb,))
idx2 = rng.randint(X2.shape[0], size=(nb,))
Xs = X1[idx1, :]
Xt = X2[idx2, :]
##############################################################################
# Plot original image
# -------------------
plt.figure(1, figsize=(6.4, 3))
plt.subplot(1, 2, 1)
plt.imshow(I1)
plt.axis("off")
plt.title("Image 1")
plt.subplot(1, 2, 2)
plt.imshow(I2)
plt.axis("off")
plt.title("Image 2")
##############################################################################
# Scatter plot of colors
# ----------------------
plt.figure(2, figsize=(6.4, 3))
plt.subplot(1, 2, 1)
plt.scatter(Xs[:, 0], Xs[:, 2], c=Xs)
plt.axis([0, 1, 0, 1])
plt.xlabel("Red")
plt.ylabel("Blue")
plt.title("Image 1")
plt.subplot(1, 2, 2)
plt.scatter(Xt[:, 0], Xt[:, 2], c=Xt)
plt.axis([0, 1, 0, 1])
plt.xlabel("Red")
plt.ylabel("Blue")
plt.title("Image 2")
plt.tight_layout()
##############################################################################
# Instantiate the different transport algorithms and fit them
# -----------------------------------------------------------
# EMDTransport
ot_emd = ot.da.EMDTransport()
ot_emd.fit(Xs=Xs, Xt=Xt)
# SinkhornTransport
ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)
ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
# prediction between images (using out of sample prediction as in [6])
transp_Xs_emd = ot_emd.transform(Xs=X1)
transp_Xt_emd = ot_emd.inverse_transform(Xt=X2)
transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
transp_Xt_sinkhorn = ot_sinkhorn.inverse_transform(Xt=X2)
I1t = minmax(mat2im(transp_Xs_emd, I1.shape))
I2t = minmax(mat2im(transp_Xt_emd, I2.shape))
I1te = minmax(mat2im(transp_Xs_sinkhorn, I1.shape))
I2te = minmax(mat2im(transp_Xt_sinkhorn, I2.shape))
##############################################################################
# Plot new images
# ---------------
plt.figure(3, figsize=(8, 4))
plt.subplot(2, 3, 1)
plt.imshow(I1)
plt.axis("off")
plt.title("Image 1")
plt.subplot(2, 3, 2)
plt.imshow(I1t)
plt.axis("off")
plt.title("Image 1 Adapt")
plt.subplot(2, 3, 3)
plt.imshow(I1te)
plt.axis("off")
plt.title("Image 1 Adapt (reg)")
plt.subplot(2, 3, 4)
plt.imshow(I2)
plt.axis("off")
plt.title("Image 2")
plt.subplot(2, 3, 5)
plt.imshow(I2t)
plt.axis("off")
plt.title("Image 2 Adapt")
plt.subplot(2, 3, 6)
plt.imshow(I2te)
plt.axis("off")
plt.title("Image 2 Adapt (reg)")
plt.tight_layout()
plt.show()
|