1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
# -*- coding: utf-8 -*-
"""
================================
OT for multi-source target shift
================================
This example introduces a target shift problem with two 2D source and 1 target domain.
"""
# Authors: Remi Flamary <remi.flamary@unice.fr>
# Ievgen Redko <ievgen.redko@univ-st-etienne.fr>
#
# License: MIT License
import pylab as pl
import numpy as np
import ot
from ot.datasets import make_data_classif
##############################################################################
# Generate data
# -------------
n = 50
sigma = 0.3
np.random.seed(1985)
p1 = 0.2
dec1 = [0, 2]
p2 = 0.9
dec2 = [0, -2]
pt = 0.4
dect = [4, 0]
xs1, ys1 = make_data_classif("2gauss_prop", n, nz=sigma, p=p1, bias=dec1)
xs2, ys2 = make_data_classif("2gauss_prop", n + 1, nz=sigma, p=p2, bias=dec2)
xt, yt = make_data_classif("2gauss_prop", n, nz=sigma, p=pt, bias=dect)
all_Xr = [xs1, xs2]
all_Yr = [ys1, ys2]
# %%
da = 1.5
def plot_ax(dec, name):
pl.plot([dec[0], dec[0]], [dec[1] - da, dec[1] + da], "k", alpha=0.5)
pl.plot([dec[0] - da, dec[0] + da], [dec[1], dec[1]], "k", alpha=0.5)
pl.text(dec[0] - 0.5, dec[1] + 2, name)
##############################################################################
# Fig 1 : plots source and target samples
# ---------------------------------------
pl.figure(1)
pl.clf()
plot_ax(dec1, "Source 1")
plot_ax(dec2, "Source 2")
plot_ax(dect, "Target")
pl.scatter(
xs1[:, 0],
xs1[:, 1],
c=ys1,
s=35,
marker="x",
cmap="Set1",
vmax=9,
label="Source 1 ({:1.2f}, {:1.2f})".format(1 - p1, p1),
)
pl.scatter(
xs2[:, 0],
xs2[:, 1],
c=ys2,
s=35,
marker="+",
cmap="Set1",
vmax=9,
label="Source 2 ({:1.2f}, {:1.2f})".format(1 - p2, p2),
)
pl.scatter(
xt[:, 0],
xt[:, 1],
c=yt,
s=35,
marker="o",
cmap="Set1",
vmax=9,
label="Target ({:1.2f}, {:1.2f})".format(1 - pt, pt),
)
pl.title("Data")
pl.legend()
pl.axis("equal")
pl.axis("off")
##############################################################################
# Instantiate Sinkhorn transport algorithm and fit them for all source domains
# ----------------------------------------------------------------------------
ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1, metric="sqeuclidean")
def print_G(G, xs, ys, xt):
for i in range(G.shape[0]):
for j in range(G.shape[1]):
if G[i, j] > 5e-4:
if ys[i]:
c = "b"
else:
c = "r"
pl.plot([xs[i, 0], xt[j, 0]], [xs[i, 1], xt[j, 1]], c, alpha=0.2)
##############################################################################
# Fig 2 : plot optimal couplings and transported samples
# ------------------------------------------------------
pl.figure(2)
pl.clf()
plot_ax(dec1, "Source 1")
plot_ax(dec2, "Source 2")
plot_ax(dect, "Target")
print_G(ot_sinkhorn.fit(Xs=xs1, Xt=xt).coupling_, xs1, ys1, xt)
print_G(ot_sinkhorn.fit(Xs=xs2, Xt=xt).coupling_, xs2, ys2, xt)
pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker="x", cmap="Set1", vmax=9)
pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker="+", cmap="Set1", vmax=9)
pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker="o", cmap="Set1", vmax=9)
pl.plot([], [], "r", alpha=0.2, label="Mass from Class 1")
pl.plot([], [], "b", alpha=0.2, label="Mass from Class 2")
pl.title("Independent OT")
pl.legend()
pl.axis("equal")
pl.axis("off")
##############################################################################
# Instantiate JCPOT adaptation algorithm and fit it
# ----------------------------------------------------------------------------
otda = ot.da.JCPOTTransport(
reg_e=1, max_iter=1000, metric="sqeuclidean", tol=1e-9, verbose=True, log=True
)
otda.fit(all_Xr, all_Yr, xt)
ws1 = otda.proportions_.dot(otda.log_["D2"][0])
ws2 = otda.proportions_.dot(otda.log_["D2"][1])
pl.figure(3)
pl.clf()
plot_ax(dec1, "Source 1")
plot_ax(dec2, "Source 2")
plot_ax(dect, "Target")
print_G(ot.bregman.sinkhorn(ws1, [], otda.log_["M"][0], reg=1e-1), xs1, ys1, xt)
print_G(ot.bregman.sinkhorn(ws2, [], otda.log_["M"][1], reg=1e-1), xs2, ys2, xt)
pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker="x", cmap="Set1", vmax=9)
pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker="+", cmap="Set1", vmax=9)
pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker="o", cmap="Set1", vmax=9)
pl.plot([], [], "r", alpha=0.2, label="Mass from Class 1")
pl.plot([], [], "b", alpha=0.2, label="Mass from Class 2")
pl.title(
"OT with prop estimation ({:1.3f},{:1.3f})".format(
otda.proportions_[0], otda.proportions_[1]
)
)
pl.legend()
pl.axis("equal")
pl.axis("off")
##############################################################################
# Run oracle transport algorithm with known proportions
# ----------------------------------------------------------------------------
h_res = np.array([1 - pt, pt])
ws1 = h_res.dot(otda.log_["D2"][0])
ws2 = h_res.dot(otda.log_["D2"][1])
pl.figure(4)
pl.clf()
plot_ax(dec1, "Source 1")
plot_ax(dec2, "Source 2")
plot_ax(dect, "Target")
print_G(ot.bregman.sinkhorn(ws1, [], otda.log_["M"][0], reg=1e-1), xs1, ys1, xt)
print_G(ot.bregman.sinkhorn(ws2, [], otda.log_["M"][1], reg=1e-1), xs2, ys2, xt)
pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker="x", cmap="Set1", vmax=9)
pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker="+", cmap="Set1", vmax=9)
pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker="o", cmap="Set1", vmax=9)
pl.plot([], [], "r", alpha=0.2, label="Mass from Class 1")
pl.plot([], [], "b", alpha=0.2, label="Mass from Class 2")
pl.title("OT with known proportion ({:1.1f},{:1.1f})".format(h_res[0], h_res[1]))
pl.legend()
pl.axis("equal")
pl.axis("off")
pl.show()
|