1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
============================
Linear OT mapping estimation
============================
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 2
# %%
import os
from pathlib import Path
import numpy as np
from matplotlib import pyplot as plt
import ot
##############################################################################
# Generate data
# -------------
n = 1000
d = 2
sigma = 0.1
rng = np.random.RandomState(42)
# source samples
angles = rng.rand(n, 1) * 2 * np.pi
xs = np.concatenate((np.sin(angles), np.cos(angles)), axis=1) + sigma * rng.randn(n, 2)
xs[: n // 2, 1] += 2
# target samples
anglet = rng.rand(n, 1) * 2 * np.pi
xt = np.concatenate((np.sin(anglet), np.cos(anglet)), axis=1) + sigma * rng.randn(n, 2)
xt[: n // 2, 1] += 2
A = np.array([[1.5, 0.7], [0.7, 1.5]])
b = np.array([[4, 2]])
xt = xt.dot(A) + b
##############################################################################
# Plot data
# ---------
plt.figure(1, (5, 5))
plt.plot(xs[:, 0], xs[:, 1], "+")
plt.plot(xt[:, 0], xt[:, 1], "o")
plt.legend(("Source", "Target"))
plt.title("Source and target distributions")
plt.show()
##############################################################################
# Estimate linear mapping and transport
# -------------------------------------
# Gaussian (linear) Monge mapping estimation
Ae, be = ot.gaussian.empirical_bures_wasserstein_mapping(xs, xt)
xst = xs.dot(Ae) + be
# Gaussian (linear) GW mapping estimation
Agw, bgw = ot.gaussian.empirical_gaussian_gromov_wasserstein_mapping(xs, xt)
xstgw = xs.dot(Agw) + bgw
##############################################################################
# Plot transported samples
# ------------------------
plt.figure(2, (10, 5))
plt.clf()
plt.subplot(1, 2, 1)
plt.plot(xs[:, 0], xs[:, 1], "+")
plt.plot(xt[:, 0], xt[:, 1], "o")
plt.plot(xst[:, 0], xst[:, 1], "+")
plt.legend(("Source", "Target", "Transp. Monge"), loc=0)
plt.title("Transported samples with Monge")
plt.subplot(1, 2, 2)
plt.plot(xs[:, 0], xs[:, 1], "+")
plt.plot(xt[:, 0], xt[:, 1], "o")
plt.plot(xstgw[:, 0], xstgw[:, 1], "+")
plt.legend(("Source", "Target", "Transp. GW"), loc=0)
plt.title("Transported samples with Gaussian GW")
plt.show()
##############################################################################
# Load image data
# ---------------
def im2mat(img):
"""Converts and image to matrix (one pixel per line)"""
return img.reshape((img.shape[0] * img.shape[1], img.shape[2]))
def mat2im(X, shape):
"""Converts back a matrix to an image"""
return X.reshape(shape)
def minmax(img):
return np.clip(img, 0, 1)
# Loading images
this_file = os.path.realpath("__file__")
data_path = os.path.join(Path(this_file).parent.parent.parent, "data")
I1 = plt.imread(os.path.join(data_path, "ocean_day.jpg")).astype(np.float64) / 256
I2 = plt.imread(os.path.join(data_path, "ocean_sunset.jpg")).astype(np.float64) / 256
X1 = im2mat(I1)
X2 = im2mat(I2)
##############################################################################
# Estimate mapping and adapt
# ----------------------------
# Monge mapping
mapping = ot.da.LinearTransport()
mapping.fit(Xs=X1, Xt=X2)
xst = mapping.transform(Xs=X1)
xts = mapping.inverse_transform(Xt=X2)
I1t = minmax(mat2im(xst, I1.shape))
I2t = minmax(mat2im(xts, I2.shape))
# gaussian GW mapping
mapping = ot.da.LinearGWTransport()
mapping.fit(Xs=X1, Xt=X2)
xstgw = mapping.transform(Xs=X1)
xtsgw = mapping.inverse_transform(Xt=X2)
I1tgw = minmax(mat2im(xstgw, I1.shape))
I2tgw = minmax(mat2im(xtsgw, I2.shape))
# %%
##############################################################################
# Plot transformed images
# -----------------------
plt.figure(3, figsize=(14, 7))
plt.subplot(2, 3, 1)
plt.imshow(I1)
plt.axis("off")
plt.title("Im. 1")
plt.subplot(2, 3, 4)
plt.imshow(I2)
plt.axis("off")
plt.title("Im. 2")
plt.subplot(2, 3, 2)
plt.imshow(I1t)
plt.axis("off")
plt.title("Monge mapping Im. 1")
plt.subplot(2, 3, 5)
plt.imshow(I2t)
plt.axis("off")
plt.title("Inverse Monge mapping Im. 2")
plt.subplot(2, 3, 3)
plt.imshow(I1tgw)
plt.axis("off")
plt.title("Gaussian GW mapping Im. 1")
plt.subplot(2, 3, 6)
plt.imshow(I2tgw)
plt.axis("off")
plt.title("Inverse Gaussian GW mapping Im. 2")
|