1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
# -*- coding: utf-8 -*-
"""
==============================
Plot Fused-Gromov-Wasserstein
==============================
This example first illustrates the computation of FGW for 1D measures estimated
using a Conditional Gradient solver [24].
[24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain
and Courty Nicolas
"Optimal Transport for structured data with application on graphs"
International Conference on Machine Learning (ICML). 2019.
"""
# Author: Titouan Vayer <titouan.vayer@irisa.fr>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 3
import matplotlib.pyplot as pl
import numpy as np
import ot
from ot.gromov import gromov_wasserstein, fused_gromov_wasserstein
##############################################################################
# Generate data
# -------------
# parameters
# We create two 1D random measures
n = 20 # number of points in the first distribution
n2 = 30 # number of points in the second distribution
sig = 1 # std of first distribution
sig2 = 0.1 # std of second distribution
np.random.seed(0)
phi = np.arange(n)[:, None]
xs = phi + sig * np.random.randn(n, 1)
ys = np.vstack(
(np.ones((n // 2, 1)), 0 * np.ones((n // 2, 1)))
) + sig2 * np.random.randn(n, 1)
phi2 = np.arange(n2)[:, None]
xt = phi2 + sig * np.random.randn(n2, 1)
yt = np.vstack(
(np.ones((n2 // 2, 1)), 0 * np.ones((n2 // 2, 1)))
) + sig2 * np.random.randn(n2, 1)
yt = yt[::-1, :]
p = ot.unif(n)
q = ot.unif(n2)
##############################################################################
# Plot data
# ---------
# plot the distributions
pl.figure(1, (7, 7))
pl.subplot(2, 1, 1)
pl.scatter(ys, xs, c=phi, s=70)
pl.ylabel("Feature value a", fontsize=20)
pl.title("$\mu=\sum_i \delta_{x_i,a_i}$", fontsize=25, y=1)
pl.xticks(())
pl.yticks(())
pl.subplot(2, 1, 2)
pl.scatter(yt, xt, c=phi2, s=70)
pl.xlabel("coordinates x/y", fontsize=25)
pl.ylabel("Feature value b", fontsize=20)
pl.title("$\\nu=\sum_j \delta_{y_j,b_j}$", fontsize=25, y=1)
pl.yticks(())
pl.tight_layout()
pl.show()
##############################################################################
# Create structure matrices and across-feature distance matrix
# ------------------------------------------------------------
# Structure matrices and across-features distance matrix
C1 = ot.dist(xs)
C2 = ot.dist(xt)
M = ot.dist(ys, yt)
w1 = ot.unif(C1.shape[0])
w2 = ot.unif(C2.shape[0])
Got = ot.emd([], [], M)
##############################################################################
# Plot matrices
# -------------
cmap = "Reds"
pl.figure(2, (5, 5))
fs = 15
l_x = [0, 5, 10, 15]
l_y = [0, 5, 10, 15, 20, 25]
gs = pl.GridSpec(5, 5)
ax1 = pl.subplot(gs[3:, :2])
pl.imshow(C1, cmap=cmap, interpolation="nearest")
pl.title("$C_1$", fontsize=fs)
pl.xlabel("$k$", fontsize=fs)
pl.ylabel("$i$", fontsize=fs)
pl.xticks(l_x)
pl.yticks(l_x)
ax2 = pl.subplot(gs[:3, 2:])
pl.imshow(C2, cmap=cmap, interpolation="nearest")
pl.title("$C_2$", fontsize=fs)
pl.ylabel("$l$", fontsize=fs)
pl.xticks(())
pl.yticks(l_y)
ax2.set_aspect("auto")
ax3 = pl.subplot(gs[3:, 2:], sharex=ax2, sharey=ax1)
pl.imshow(M, cmap=cmap, interpolation="nearest")
pl.yticks(l_x)
pl.xticks(l_y)
pl.ylabel("$i$", fontsize=fs)
pl.title("$M_{AB}$", fontsize=fs)
pl.xlabel("$j$", fontsize=fs)
pl.tight_layout()
ax3.set_aspect("auto")
pl.show()
##############################################################################
# Compute FGW/GW
# --------------
# Computing FGW and GW
alpha = 1e-3
ot.tic()
Gwg, logw = fused_gromov_wasserstein(
M, C1, C2, p, q, loss_fun="square_loss", alpha=alpha, verbose=True, log=True
)
ot.toc()
# reload_ext WGW
Gg, log = gromov_wasserstein(
C1, C2, p, q, loss_fun="square_loss", verbose=True, log=True
)
##############################################################################
# Visualize transport matrices
# ----------------------------
# visu OT matrix
cmap = "Blues"
fs = 15
pl.figure(3, (13, 5))
pl.clf()
pl.subplot(1, 3, 1)
pl.imshow(Got, cmap=cmap, interpolation="nearest")
pl.ylabel("$i$", fontsize=fs)
pl.xticks(())
pl.title("Wasserstein ($M$ only)")
pl.subplot(1, 3, 2)
pl.imshow(Gg, cmap=cmap, interpolation="nearest")
pl.title("Gromov ($C_1,C_2$ only)")
pl.xticks(())
pl.subplot(1, 3, 3)
pl.imshow(Gwg, cmap=cmap, interpolation="nearest")
pl.title("FGW ($M+C_1,C_2$)")
pl.xlabel("$j$", fontsize=fs)
pl.ylabel("$i$", fontsize=fs)
pl.tight_layout()
pl.show()
|