1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
# -*- coding: utf-8 -*-
"""
===============================================
Quantized Fused Gromov-Wasserstein examples
===============================================
These examples show how to use the quantized (Fused) Gromov-Wasserstein
solvers (qFGW) [68]. POT provides a generic solver `quantized_fused_gromov_wasserstein_partitioned`
that takes as inputs partitioned graphs potentially endowed with node features,
which have to be built by the user. On top of that, POT provides two wrappers:
i) `quantized_fused_gromov_wasserstein` operating over generic graphs, whose
partitioning is performed via `get_graph_partition` using e.g the Louvain algorithm,
and representant for each partition can be selected via `get_graph_representants`
using e.g the PageRank algorithm.
ii) `quantized_fused_gromov_wasserstein_samples` operating over point clouds,
e.g :math:`X_1 \in R^{n_1 * d_1}` and :math:`X_2 \in R^{n_2 * d_2}`
endowed with their respective euclidean geometry, whose partitioning and
representant selection is performed jointly using e.g the K-means algorithm
via the function `get_partition_and_representants_samples`.
We illustrate next how to compute the qGW distance on both types of data by:
i) Generating two graphs following Stochastic Block Models encoded as shortest
path matrices as qGW solvers tends to require dense structure to achieve a good
approximation of the GW distance (as qGW is an upper-bound of GW). In the meantime,
we illustrate an optional feature of our solvers, namely the use of auxiliary
structures e.g adjacency matrices to perform the graph partitioning.
ii) Generating two point clouds representing curves in 2D and 3D respectively.
We augment these point clouds by considering additional features of the same
dimensionaly :math:`F_1 \in R^{n_1 * d}` and :math:`F_2 \in R^{n_2 * d}`,
representing the color intensity associated to each sample of both distributions.
Then we compute the qFGW distance between these attributed point clouds.
[68] Chowdhury, S., Miller, D., & Needham, T. (2021). Quantized gromov-wasserstein.
ECML PKDD 2021. Springer International Publishing.
"""
# Author: Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 2
import numpy as np
import matplotlib.pylab as pl
import matplotlib.pyplot as plt
import networkx
from networkx.generators.community import stochastic_block_model as sbm
from scipy.sparse.csgraph import shortest_path
from ot.gromov import (
quantized_fused_gromov_wasserstein_partitioned,
quantized_fused_gromov_wasserstein,
get_graph_partition,
get_graph_representants,
format_partitioned_graph,
quantized_fused_gromov_wasserstein_samples,
get_partition_and_representants_samples,
)
#############################################################################
#
# Generate graphs
# --------------------------------------------------------------------------
#
# Create two graphs following Stochastic Block models of 2 and 3 clusters.
N1 = 30 # 2 communities
N2 = 45 # 3 communities
p1 = [[0.8, 0.1], [0.1, 0.7]]
p2 = [[0.8, 0.1, 0.0], [0.1, 0.75, 0.1], [0.0, 0.1, 0.7]]
G1 = sbm(seed=0, sizes=[N1 // 2, N1 // 2], p=p1)
G2 = sbm(seed=0, sizes=[N2 // 3, N2 // 3, N2 // 3], p=p2)
C1 = networkx.to_numpy_array(G1)
C2 = networkx.to_numpy_array(G2)
spC1 = shortest_path(C1)
spC2 = shortest_path(C2)
h1 = np.ones(C1.shape[0]) / C1.shape[0]
h2 = np.ones(C2.shape[0]) / C2.shape[0]
# Add weights on the edges for visualization later on
weight_intra_G1 = 5
weight_inter_G1 = 0.5
weight_intra_G2 = 1.0
weight_inter_G2 = 1.5
weightedG1 = networkx.Graph()
part_G1 = [G1.nodes[i]["block"] for i in range(N1)]
for node in G1.nodes():
weightedG1.add_node(node)
for i, j in G1.edges():
if part_G1[i] == part_G1[j]:
weightedG1.add_edge(i, j, weight=weight_intra_G1)
else:
weightedG1.add_edge(i, j, weight=weight_inter_G1)
weightedG2 = networkx.Graph()
part_G2 = [G2.nodes[i]["block"] for i in range(N2)]
for node in G2.nodes():
weightedG2.add_node(node)
for i, j in G2.edges():
if part_G2[i] == part_G2[j]:
weightedG2.add_edge(i, j, weight=weight_intra_G2)
else:
weightedG2.add_edge(i, j, weight=weight_inter_G2)
# setup for graph visualization
def node_coloring(part, starting_color=0):
# get graphs partition and their coloring
unique_colors = ["C%s" % (starting_color + i) for i in np.unique(part)]
nodes_color_part = []
for cluster in part:
nodes_color_part.append(unique_colors[cluster])
return nodes_color_part
def draw_graph(
G,
C,
nodes_color_part,
rep_indices,
node_alphas=None,
pos=None,
edge_color="black",
alpha_edge=0.7,
node_size=None,
shiftx=0,
seed=0,
highlight_rep=False,
):
if pos is None:
pos = networkx.spring_layout(G, scale=1.0, seed=seed)
if shiftx != 0:
for k, v in pos.items():
v[0] = v[0] + shiftx
width_edge = 1.5
if not highlight_rep:
networkx.draw_networkx_edges(
G, pos, width=width_edge, alpha=alpha_edge, edge_color=edge_color
)
else:
for edge in G.edges:
if (edge[0] in rep_indices) and (edge[1] in rep_indices):
networkx.draw_networkx_edges(
G,
pos,
edgelist=[edge],
width=width_edge,
alpha=alpha_edge,
edge_color=edge_color,
)
else:
networkx.draw_networkx_edges(
G,
pos,
edgelist=[edge],
width=width_edge,
alpha=0.2,
edge_color=edge_color,
)
for node, node_color in enumerate(nodes_color_part):
local_node_shape, local_node_size = "o", node_size
if highlight_rep:
if node in rep_indices:
local_node_shape, local_node_size = "*", 6 * node_size
if node_alphas is None:
alpha = 0.9
if highlight_rep:
alpha = 0.9 if node in rep_indices else 0.1
else:
alpha = node_alphas[node]
networkx.draw_networkx_nodes(
G,
pos,
nodelist=[node],
alpha=alpha,
node_shape=local_node_shape,
node_size=local_node_size,
node_color=node_color,
)
return pos
#############################################################################
#
# Compute their quantized Gromov-Wasserstein distance without using the wrapper
# ---------------------------------------------------------
#
# We detail next the steps implemented within the wrapper that preprocess graphs
# to form partitioned graphs, which are then passed as input to the generic qFGW solver.
# 1-a) Partition C1 and C2 in 2 and 3 clusters respectively using Louvain
# algorithm from Networkx. Then encode these partitions via vectors of assignments.
part_method = "louvain"
rep_method = "pagerank"
npart_1 = 2 # 2 clusters used to describe C1
npart_2 = 3 # 3 clusters used to describe C2
part1 = get_graph_partition(
C1, npart=npart_1, part_method=part_method, F=None, alpha=1.0
)
part2 = get_graph_partition(
C2, npart=npart_2, part_method=part_method, F=None, alpha=1.0
)
# 1-b) Select representant in each partition using the Pagerank algorithm
# implementation from networkx.
rep_indices1 = get_graph_representants(C1, part1, rep_method=rep_method)
rep_indices2 = get_graph_representants(C2, part2, rep_method=rep_method)
# 1-c) Format partitions such that:
# CR contains relations between representants in each space.
# list_R contains relations between samples and representants within each partition.
# list_h contains samples relative importance within each partition.
CR1, list_R1, list_h1 = format_partitioned_graph(
spC1, h1, part1, rep_indices1, F=None, M=None, alpha=1.0
)
CR2, list_R2, list_h2 = format_partitioned_graph(
spC2, h2, part2, rep_indices2, F=None, M=None, alpha=1.0
)
# 1-d) call to partitioned quantized gromov-wasserstein solver
OT_global_, OTs_local_, OT_, log_ = quantized_fused_gromov_wasserstein_partitioned(
CR1,
CR2,
list_R1,
list_R2,
list_h1,
list_h2,
MR=None,
alpha=1.0,
build_OT=True,
log=True,
)
# Visualization of the graph pre-processing
node_size = 40
fontsize = 10
seed_G1 = 0
seed_G2 = 3
part1_ = part1.astype(np.int32)
part2_ = part2.astype(np.int32)
nodes_color_part1 = node_coloring(part1_, starting_color=0)
nodes_color_part2 = node_coloring(
part2_, starting_color=np.unique(nodes_color_part1).shape[0]
)
pl.figure(1, figsize=(6, 5))
pl.clf()
pl.axis("off")
pl.subplot(2, 3, 1)
pl.title(r"Input graph: $\mathbf{spC_1}$", fontsize=fontsize)
pos1 = draw_graph(
G1, C1, ["C0" for _ in part1_], rep_indices1, node_size=node_size, seed=seed_G1
)
pl.subplot(2, 3, 2)
pl.title("Partitioning", fontsize=fontsize)
_ = draw_graph(
G1, C1, nodes_color_part1, rep_indices1, pos=pos1, node_size=node_size, seed=seed_G1
)
pl.subplot(2, 3, 3)
pl.title("Representant selection", fontsize=fontsize)
_ = draw_graph(
G1,
C1,
nodes_color_part1,
rep_indices1,
pos=pos1,
node_size=node_size,
seed=seed_G1,
highlight_rep=True,
)
pl.subplot(2, 3, 4)
pl.title(r"Input graph: $\mathbf{spC_2}$", fontsize=fontsize)
pos2 = draw_graph(
G2, C2, ["C0" for _ in part2_], rep_indices2, node_size=node_size, seed=seed_G2
)
pl.subplot(2, 3, 5)
pl.title(r"Partitioning", fontsize=fontsize)
_ = draw_graph(
G2, C2, nodes_color_part2, rep_indices2, pos=pos2, node_size=node_size, seed=seed_G2
)
pl.subplot(2, 3, 6)
pl.title(r"Representant selection", fontsize=fontsize)
_ = draw_graph(
G2,
C2,
nodes_color_part2,
rep_indices2,
pos=pos2,
node_size=node_size,
seed=seed_G2,
highlight_rep=True,
)
pl.tight_layout()
#############################################################################
#
# Compute the quantized Gromov-Wasserstein distance using the wrapper
# ---------------------------------------------------------
#
# Compute qGW(spC1, h1, spC2, h2). We also illustrate the use of auxiliary matrices
# such that the adjacency matrices `C1_aux=C1` and `C2_aux=C2` to partition the graph using
# Louvain algorithm, and the Pagerank algorithm for selecting representant within
# each partition. Notice that `C1_aux` and `C2_aux` are optional, if they are not
# specified these pre-processing algorithms will be applied to spC2 and spC3.
# no node features are considered on this synthetic dataset. Hence we simply
# let F1, F2 = None and set alpha = 1.
OT_global, OTs_local, OT, log = quantized_fused_gromov_wasserstein(
spC1,
spC2,
npart_1,
npart_2,
h1,
h2,
C1_aux=C1,
C2_aux=C2,
F1=None,
F2=None,
alpha=1.0,
part_method=part_method,
rep_method=rep_method,
log=True,
)
qGW_dist = log["qFGW_dist"]
#############################################################################
#
# Visualization of the quantized Gromov-Wasserstein matching
# --------------------------------------------------------------
#
# We color nodes of the graph based on the respective partition of each graph.
# On the first plot we illustrate the qGW matching between both shortest path matrices.
# While the GW matching across representants of each space is illustrated on the right.
def draw_transp_colored_qGW(
G1,
C1,
G2,
C2,
part1,
part2,
rep_indices1,
rep_indices2,
T,
pos1=None,
pos2=None,
shiftx=4,
switchx=False,
node_size=70,
seed_G1=0,
seed_G2=0,
highlight_rep=False,
):
starting_color = 0
# get graphs partition and their coloring
unique_colors1 = ["C%s" % (starting_color + i) for i in np.unique(part1)]
nodes_color_part1 = []
for cluster in part1:
nodes_color_part1.append(unique_colors1[cluster])
starting_color = len(unique_colors1) + 1
unique_colors2 = ["C%s" % (starting_color + i) for i in np.unique(part2)]
nodes_color_part2 = []
for cluster in part2:
nodes_color_part2.append(unique_colors2[cluster])
pos1 = draw_graph(
G1,
C1,
nodes_color_part1,
rep_indices1,
pos=pos1,
node_size=node_size,
shiftx=0,
seed=seed_G1,
highlight_rep=highlight_rep,
)
pos2 = draw_graph(
G2,
C2,
nodes_color_part2,
rep_indices2,
pos=pos2,
node_size=node_size,
shiftx=shiftx,
seed=seed_G1,
highlight_rep=highlight_rep,
)
if not highlight_rep:
for k1, v1 in pos1.items():
max_Tk1 = np.max(T[k1, :])
for k2, v2 in pos2.items():
if T[k1, k2] > 0:
pl.plot(
[pos1[k1][0], pos2[k2][0]],
[pos1[k1][1], pos2[k2][1]],
"-",
lw=0.7,
alpha=T[k1, k2] / max_Tk1,
color=nodes_color_part1[k1],
)
else: # OT is only between representants
for id1, node_id1 in enumerate(rep_indices1):
max_Tk1 = np.max(T[id1, :])
for id2, node_id2 in enumerate(rep_indices2):
if T[id1, id2] > 0:
pl.plot(
[pos1[node_id1][0], pos2[node_id2][0]],
[pos1[node_id1][1], pos2[node_id2][1]],
"-",
lw=0.8,
alpha=T[id1, id2] / max_Tk1,
color=nodes_color_part1[node_id1],
)
return pos1, pos2
pl.figure(2, figsize=(5, 2.5))
pl.clf()
pl.axis("off")
pl.subplot(1, 2, 1)
pl.title(
r"qGW$(\mathbf{spC_1}, \mathbf{spC_1}) =%s$" % (np.round(qGW_dist, 3)),
fontsize=fontsize,
)
pos1, pos2 = draw_transp_colored_qGW(
weightedG1,
C1,
weightedG2,
C2,
part1_,
part2_,
rep_indices1,
rep_indices2,
T=OT_,
shiftx=1.5,
node_size=node_size,
seed_G1=seed_G1,
seed_G2=seed_G2,
)
pl.tight_layout()
pl.subplot(1, 2, 2)
pl.title(
r" GW$(\mathbf{CR_1}, \mathbf{CR_2}) =%s$" % (np.round(log_["global dist"], 3)),
fontsize=fontsize,
)
pos1, pos2 = draw_transp_colored_qGW(
weightedG1,
C1,
weightedG2,
C2,
part1_,
part2_,
rep_indices1,
rep_indices2,
T=OT_global,
shiftx=1.5,
node_size=node_size,
seed_G1=seed_G1,
seed_G2=seed_G2,
highlight_rep=True,
)
pl.tight_layout()
pl.show()
#############################################################################
#
# Generate attributed point clouds
# --------------------------------------------------------------------------
#
# Create two attributed point clouds representing curves in 2D and 3D respectively,
# whose samples are further associated to various color intensities.
n_samples = 100
# Generate 2D and 3D curves
theta = np.linspace(-4 * np.pi, 4 * np.pi, n_samples)
z = np.linspace(1, 2, n_samples)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
# Source and target distribution across spaces encoded respectively via their
# squared euclidean distance matrices.
X = np.concatenate([x.reshape(-1, 1), z.reshape(-1, 1)], axis=1)
Y = np.concatenate([x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], axis=1)
# Further associated to color intensity features derived from z
FX = z - z.min() / (z.max() - z.min())
FX = np.clip(0.8 * FX + 0.2, a_min=0.2, a_max=1.0) # for numerical issues
FY = FX
#############################################################################
#
# Visualize partitioned attributed point clouds
# --------------------------------------------------------------------------
#
# Compute the partitioning and representant selection further used within
# qFGW wrapper, both provided by a K-means algorithm. Then visualize partitioned spaces.
part1, rep_indices1 = get_partition_and_representants_samples(X, 4, "kmeans", 0)
part2, rep_indices2 = get_partition_and_representants_samples(Y, 4, "kmeans", 0)
upart1 = np.unique(part1)
upart2 = np.unique(part2)
# Plot the source and target samples as distributions
s = 20
fig = plt.figure(3, figsize=(6, 3))
ax1 = fig.add_subplot(1, 3, 1)
ax1.set_title("2D curve")
ax1.scatter(X[:, 0], X[:, 1], color="C0", alpha=FX, s=s)
plt.axis("off")
ax2 = fig.add_subplot(1, 3, 2)
ax2.set_title("Partitioning")
for i, elem in enumerate(upart1):
idx = np.argwhere(part1 == elem)[:, 0]
ax2.scatter(X[idx, 0], X[idx, 1], color="C%s" % i, alpha=FX[idx], s=s)
plt.axis("off")
ax3 = fig.add_subplot(1, 3, 3)
ax3.set_title("Representant selection")
for i, elem in enumerate(upart1):
idx = np.argwhere(part1 == elem)[:, 0]
ax3.scatter(X[idx, 0], X[idx, 1], color="C%s" % i, alpha=FX[idx], s=10)
rep_idx = rep_indices1[i]
ax3.scatter(
[X[rep_idx, 0]], [X[rep_idx, 1]], color="C%s" % i, alpha=1, s=6 * s, marker="*"
)
plt.axis("off")
plt.tight_layout()
plt.show()
start_color = upart1.shape[0] + 1
fig = plt.figure(4, figsize=(6, 5))
ax4 = fig.add_subplot(1, 3, 1, projection="3d")
ax4.set_title("3D curve")
ax4.scatter(Y[:, 0], Y[:, 1], Y[:, 2], c="C0", alpha=FY, s=s)
plt.axis("off")
ax5 = fig.add_subplot(1, 3, 2, projection="3d")
ax5.set_title("Partitioning")
for i, elem in enumerate(upart2):
idx = np.argwhere(part2 == elem)[:, 0]
color = "C%s" % (start_color + i)
ax5.scatter(Y[idx, 0], Y[idx, 1], Y[idx, 2], c=color, alpha=FY[idx], s=s)
plt.axis("off")
ax6 = fig.add_subplot(1, 3, 3, projection="3d")
ax6.set_title("Representant selection")
for i, elem in enumerate(upart2):
idx = np.argwhere(part2 == elem)[:, 0]
color = "C%s" % (start_color + i)
rep_idx = rep_indices2[i]
ax6.scatter(Y[idx, 0], Y[idx, 1], Y[idx, 2], c=color, alpha=FY[idx], s=s)
ax6.scatter(
[Y[rep_idx, 0]],
[Y[rep_idx, 1]],
[Y[rep_idx, 2]],
c=color,
alpha=1,
s=6 * s,
marker="*",
)
plt.axis("off")
plt.tight_layout()
plt.show()
#############################################################################
#
# Compute the quantized Fused Gromov-Wasserstein distance between samples using the wrapper
# ---------------------------------------------------------
#
# Compute qFGW(X, FX, hX, Y, FY, HY), setting the trade-off parameter between
# structures and features `alpha=0.5`. This solver considers a squared euclidean structure
# for each distribution X and Y, and partition each of them into 4 clusters using
# the K-means algorithm before computing qFGW.
T_global, Ts_local, T, log = quantized_fused_gromov_wasserstein_samples(
X,
Y,
4,
4,
p=None,
q=None,
F1=FX[:, None],
F2=FY[:, None],
alpha=0.5,
method="kmeans",
log=True,
)
# Plot low rank GW with different ranks
pl.figure(5, figsize=(6, 3))
pl.subplot(1, 2, 1)
pl.title("OT between distributions")
pl.imshow(T, interpolation="nearest", aspect="auto")
pl.colorbar()
pl.axis("off")
pl.subplot(1, 2, 2)
pl.title("OT between representants")
pl.imshow(T_global, interpolation="nearest", aspect="auto")
pl.axis("off")
pl.colorbar()
pl.tight_layout()
pl.show()
|