File: plot_semirelaxed_fgw.py

package info (click to toggle)
python-pot 0.9.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 3,884 kB
  • sloc: python: 56,498; cpp: 2,310; makefile: 265; sh: 19
file content (432 lines) | stat: -rw-r--r-- 11,270 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# -*- coding: utf-8 -*-
"""
===============================================
Semi-relaxed (Fused) Gromov-Wasserstein example
===============================================

This example is designed to show how to use the semi-relaxed Gromov-Wasserstein
and the semi-relaxed Fused Gromov-Wasserstein divergences.

sr(F)GW between two graphs G1 and G2 searches for a reweighing of the nodes of
G2 at a minimal (F)GW distance from G1.

First, we generate two graphs following Stochastic Block Models, then show
how to compute their srGW matchings and illustrate them. These graphs are then
endowed with node features and we follow the same process with srFGW.

[48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2021.
"""

# Author: Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 1

import numpy as np
import matplotlib.pylab as pl
from ot.gromov import (
    semirelaxed_gromov_wasserstein,
    semirelaxed_fused_gromov_wasserstein,
    gromov_wasserstein,
    fused_gromov_wasserstein,
)
import networkx
from networkx.generators.community import stochastic_block_model as sbm

#############################################################################
#
# Generate two graphs following Stochastic Block models of 2 and 3 clusters.
# --------------------------------------------------------------------------


N2 = 20  # 2 communities
N3 = 30  # 3 communities
p2 = [[1.0, 0.1], [0.1, 0.9]]
p3 = [[1.0, 0.1, 0.0], [0.1, 0.95, 0.1], [0.0, 0.1, 0.9]]
G2 = sbm(seed=0, sizes=[N2 // 2, N2 // 2], p=p2)
G3 = sbm(seed=0, sizes=[N3 // 3, N3 // 3, N3 // 3], p=p3)


C2 = networkx.to_numpy_array(G2)
C3 = networkx.to_numpy_array(G3)

h2 = np.ones(C2.shape[0]) / C2.shape[0]
h3 = np.ones(C3.shape[0]) / C3.shape[0]

# Add weights on the edges for visualization later on
weight_intra_G2 = 5
weight_inter_G2 = 0.5
weight_intra_G3 = 1.0
weight_inter_G3 = 1.5

weightedG2 = networkx.Graph()
part_G2 = [G2.nodes[i]["block"] for i in range(N2)]

for node in G2.nodes():
    weightedG2.add_node(node)
for i, j in G2.edges():
    if part_G2[i] == part_G2[j]:
        weightedG2.add_edge(i, j, weight=weight_intra_G2)
    else:
        weightedG2.add_edge(i, j, weight=weight_inter_G2)

weightedG3 = networkx.Graph()
part_G3 = [G3.nodes[i]["block"] for i in range(N3)]

for node in G3.nodes():
    weightedG3.add_node(node)
for i, j in G3.edges():
    if part_G3[i] == part_G3[j]:
        weightedG3.add_edge(i, j, weight=weight_intra_G3)
    else:
        weightedG3.add_edge(i, j, weight=weight_inter_G3)

#############################################################################
#
# Compute their semi-relaxed Gromov-Wasserstein divergences
# ---------------------------------------------------------

# 0) GW(C2, h2, C3, h3) for reference
OT, log = gromov_wasserstein(C2, C3, h2, h3, symmetric=True, log=True)
gw = log["gw_dist"]

# 1) srGW(C2, h2, C3)
OT_23, log_23 = semirelaxed_gromov_wasserstein(
    C2, C3, h2, symmetric=True, log=True, G0=None
)
srgw_23 = log_23["srgw_dist"]

# 2) srGW(C3, h3, C2)

OT_32, log_32 = semirelaxed_gromov_wasserstein(
    C3, C2, h3, symmetric=None, log=True, G0=OT.T
)
srgw_32 = log_32["srgw_dist"]

print("GW(C2, C3) = ", gw)
print("srGW(C2, h2, C3) = ", srgw_23)
print("srGW(C3, h3, C2) = ", srgw_32)


#############################################################################
#
# Visualization of the semi-relaxed Gromov-Wasserstein matchings
# --------------------------------------------------------------
#
# We color nodes of the graph on the right - then project its node colors
# based on the optimal transport plan from the srGW matching


def draw_graph(
    G,
    C,
    nodes_color_part,
    Gweights=None,
    pos=None,
    edge_color="black",
    node_size=None,
    shiftx=0,
    seed=0,
):
    if pos is None:
        pos = networkx.spring_layout(G, scale=1.0, seed=seed)

    if shiftx != 0:
        for k, v in pos.items():
            v[0] = v[0] + shiftx

    alpha_edge = 0.7
    width_edge = 1.8
    if Gweights is None:
        networkx.draw_networkx_edges(
            G, pos, width=width_edge, alpha=alpha_edge, edge_color=edge_color
        )
    else:
        # We make more visible connections between activated nodes
        n = len(Gweights)
        edgelist_activated = []
        edgelist_deactivated = []
        for i in range(n):
            for j in range(n):
                if Gweights[i] * Gweights[j] * C[i, j] > 0:
                    edgelist_activated.append((i, j))
                elif C[i, j] > 0:
                    edgelist_deactivated.append((i, j))

        networkx.draw_networkx_edges(
            G,
            pos,
            edgelist=edgelist_activated,
            width=width_edge,
            alpha=alpha_edge,
            edge_color=edge_color,
        )
        networkx.draw_networkx_edges(
            G,
            pos,
            edgelist=edgelist_deactivated,
            width=width_edge,
            alpha=0.1,
            edge_color=edge_color,
        )

    if Gweights is None:
        for node, node_color in enumerate(nodes_color_part):
            networkx.draw_networkx_nodes(
                G,
                pos,
                nodelist=[node],
                node_size=node_size,
                alpha=1,
                node_color=node_color,
            )
    else:
        scaled_Gweights = Gweights / (0.5 * Gweights.max())
        nodes_size = node_size * scaled_Gweights
        for node, node_color in enumerate(nodes_color_part):
            networkx.draw_networkx_nodes(
                G,
                pos,
                nodelist=[node],
                node_size=nodes_size[node],
                alpha=1,
                node_color=node_color,
            )
    return pos


def draw_transp_colored_srGW(
    G1,
    C1,
    G2,
    C2,
    part_G1,
    p1,
    p2,
    T,
    pos1=None,
    pos2=None,
    shiftx=4,
    switchx=False,
    node_size=70,
    seed_G1=0,
    seed_G2=0,
):
    starting_color = 0
    # get graphs partition and their coloring
    part1 = part_G1.copy()
    unique_colors = ["C%s" % (starting_color + i) for i in np.unique(part1)]
    nodes_color_part1 = []
    for cluster in part1:
        nodes_color_part1.append(unique_colors[cluster])

    nodes_color_part2 = []
    # T: getting colors assignment from argmin of columns
    for i in range(len(G2.nodes())):
        j = np.argmax(T[:, i])
        nodes_color_part2.append(nodes_color_part1[j])
    pos1 = draw_graph(
        G1,
        C1,
        nodes_color_part1,
        Gweights=p1,
        pos=pos1,
        node_size=node_size,
        shiftx=0,
        seed=seed_G1,
    )
    pos2 = draw_graph(
        G2,
        C2,
        nodes_color_part2,
        Gweights=p2,
        pos=pos2,
        node_size=node_size,
        shiftx=shiftx,
        seed=seed_G2,
    )
    for k1, v1 in pos1.items():
        for k2, v2 in pos2.items():
            if T[k1, k2] > 0:
                pl.plot(
                    [pos1[k1][0], pos2[k2][0]],
                    [pos1[k1][1], pos2[k2][1]],
                    "-",
                    lw=0.8,
                    alpha=0.5,
                    color=nodes_color_part1[k1],
                )
    return pos1, pos2


node_size = 40
fontsize = 10
seed_G2 = 0
seed_G3 = 4

pl.figure(1, figsize=(8, 2.5))
pl.clf()
pl.subplot(121)
pl.axis("off")
pl.axis
pl.title(
    r"srGW$(\mathbf{C_2},\mathbf{h_2},\mathbf{C_3}) =%s$" % (np.round(srgw_23, 3)),
    fontsize=fontsize,
)

hbar2 = OT_23.sum(axis=0)
pos1, pos2 = draw_transp_colored_srGW(
    weightedG2,
    C2,
    weightedG3,
    C3,
    part_G2,
    p1=None,
    p2=hbar2,
    T=OT_23,
    shiftx=1.5,
    node_size=node_size,
    seed_G1=seed_G2,
    seed_G2=seed_G3,
)
pl.subplot(122)
pl.axis("off")
hbar3 = OT_32.sum(axis=0)
pl.title(
    r"srGW$(\mathbf{C_3}, \mathbf{h_3},\mathbf{C_2}) =%s$" % (np.round(srgw_32, 3)),
    fontsize=fontsize,
)
pos1, pos2 = draw_transp_colored_srGW(
    weightedG3,
    C3,
    weightedG2,
    C2,
    part_G3,
    p1=None,
    p2=hbar3,
    T=OT_32,
    pos1=pos2,
    pos2=pos1,
    shiftx=3.0,
    node_size=node_size,
    seed_G1=0,
    seed_G2=0,
)
pl.tight_layout()

pl.show()

#############################################################################
#
# Add node features
# -----------------

# We add node features with given mean - by clusters
# and inversely proportional to clusters' intra-connectivity

F2 = np.zeros((N2, 1))
for i, c in enumerate(part_G2):
    F2[i, 0] = np.random.normal(loc=c, scale=0.01)

F3 = np.zeros((N3, 1))
for i, c in enumerate(part_G3):
    F3[i, 0] = np.random.normal(loc=2.0 - c, scale=0.01)

#############################################################################
#
# Compute their semi-relaxed Fused Gromov-Wasserstein divergences
# ---------------------------------------------------------------

alpha = 0.5
# Compute pairwise euclidean distance between node features
M = (F2**2).dot(np.ones((1, N3))) + np.ones((N2, 1)).dot((F3**2).T) - 2 * F2.dot(F3.T)

# 0) FGW_alpha(C2, F2, h2, C3, F3, h3) for reference

OT, log = fused_gromov_wasserstein(
    M, C2, C3, h2, h3, symmetric=True, alpha=alpha, log=True
)
fgw = log["fgw_dist"]

# 1) srFGW(C2, F2, h2, C3, F3)
OT_23, log_23 = semirelaxed_fused_gromov_wasserstein(
    M, C2, C3, h2, symmetric=True, alpha=0.5, log=True, G0=None
)
srfgw_23 = log_23["srfgw_dist"]

# 2) srFGW(C3, F3, h3, C2, F2)

OT_32, log_32 = semirelaxed_fused_gromov_wasserstein(
    M.T, C3, C2, h3, symmetric=None, alpha=alpha, log=True, G0=None
)
srfgw_32 = log_32["srfgw_dist"]

print("FGW(C2, F2, C3, F3) = ", fgw)
print("srGW(C2, F2, h2, C3, F3) = ", srfgw_23)
print("srGW(C3, F3, h3, C2, F2) = ", srfgw_32)

#############################################################################
#
# Visualization of the semi-relaxed Fused Gromov-Wasserstein matchings
# --------------------------------------------------------------------
#
# We color nodes of the graph on the right - then project its node colors
# based on the optimal transport plan from the srFGW matching
# NB: colors refer to clusters - not to node features

pl.figure(2, figsize=(8, 2.5))
pl.clf()
pl.subplot(121)
pl.axis("off")
pl.axis
pl.title(
    r"srFGW$(\mathbf{C_2},\mathbf{F_2},\mathbf{h_2},\mathbf{C_3},\mathbf{F_3}) =%s$"
    % (np.round(srfgw_23, 3)),
    fontsize=fontsize,
)

hbar2 = OT_23.sum(axis=0)
pos1, pos2 = draw_transp_colored_srGW(
    weightedG2,
    C2,
    weightedG3,
    C3,
    part_G2,
    p1=None,
    p2=hbar2,
    T=OT_23,
    shiftx=1.5,
    node_size=node_size,
    seed_G1=seed_G2,
    seed_G2=seed_G3,
)
pl.subplot(122)
pl.axis("off")
hbar3 = OT_32.sum(axis=0)
pl.title(
    r"srFGW$(\mathbf{C_3}, \mathbf{F_3}, \mathbf{h_3}, \mathbf{C_2}, \mathbf{F_2}) =%s$"
    % (np.round(srfgw_32, 3)),
    fontsize=fontsize,
)
pos1, pos2 = draw_transp_colored_srGW(
    weightedG3,
    C3,
    weightedG2,
    C2,
    part_G3,
    p1=None,
    p2=hbar3,
    T=OT_32,
    pos1=pos2,
    pos2=pos1,
    shiftx=3.0,
    node_size=node_size,
    seed_G1=0,
    seed_G2=0,
)
pl.tight_layout()

pl.show()