1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
# -*- coding: utf-8 -*-
"""
===============================================
Semi-relaxed (Fused) Gromov-Wasserstein example
===============================================
This example is designed to show how to use the semi-relaxed Gromov-Wasserstein
and the semi-relaxed Fused Gromov-Wasserstein divergences.
sr(F)GW between two graphs G1 and G2 searches for a reweighing of the nodes of
G2 at a minimal (F)GW distance from G1.
First, we generate two graphs following Stochastic Block Models, then show
how to compute their srGW matchings and illustrate them. These graphs are then
endowed with node features and we follow the same process with srFGW.
[48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty.
"Semi-relaxed Gromov-Wasserstein divergence and applications on graphs"
International Conference on Learning Representations (ICLR), 2021.
"""
# Author: Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 1
import numpy as np
import matplotlib.pylab as pl
from ot.gromov import (
semirelaxed_gromov_wasserstein,
semirelaxed_fused_gromov_wasserstein,
gromov_wasserstein,
fused_gromov_wasserstein,
)
import networkx
from networkx.generators.community import stochastic_block_model as sbm
#############################################################################
#
# Generate two graphs following Stochastic Block models of 2 and 3 clusters.
# --------------------------------------------------------------------------
N2 = 20 # 2 communities
N3 = 30 # 3 communities
p2 = [[1.0, 0.1], [0.1, 0.9]]
p3 = [[1.0, 0.1, 0.0], [0.1, 0.95, 0.1], [0.0, 0.1, 0.9]]
G2 = sbm(seed=0, sizes=[N2 // 2, N2 // 2], p=p2)
G3 = sbm(seed=0, sizes=[N3 // 3, N3 // 3, N3 // 3], p=p3)
C2 = networkx.to_numpy_array(G2)
C3 = networkx.to_numpy_array(G3)
h2 = np.ones(C2.shape[0]) / C2.shape[0]
h3 = np.ones(C3.shape[0]) / C3.shape[0]
# Add weights on the edges for visualization later on
weight_intra_G2 = 5
weight_inter_G2 = 0.5
weight_intra_G3 = 1.0
weight_inter_G3 = 1.5
weightedG2 = networkx.Graph()
part_G2 = [G2.nodes[i]["block"] for i in range(N2)]
for node in G2.nodes():
weightedG2.add_node(node)
for i, j in G2.edges():
if part_G2[i] == part_G2[j]:
weightedG2.add_edge(i, j, weight=weight_intra_G2)
else:
weightedG2.add_edge(i, j, weight=weight_inter_G2)
weightedG3 = networkx.Graph()
part_G3 = [G3.nodes[i]["block"] for i in range(N3)]
for node in G3.nodes():
weightedG3.add_node(node)
for i, j in G3.edges():
if part_G3[i] == part_G3[j]:
weightedG3.add_edge(i, j, weight=weight_intra_G3)
else:
weightedG3.add_edge(i, j, weight=weight_inter_G3)
#############################################################################
#
# Compute their semi-relaxed Gromov-Wasserstein divergences
# ---------------------------------------------------------
# 0) GW(C2, h2, C3, h3) for reference
OT, log = gromov_wasserstein(C2, C3, h2, h3, symmetric=True, log=True)
gw = log["gw_dist"]
# 1) srGW(C2, h2, C3)
OT_23, log_23 = semirelaxed_gromov_wasserstein(
C2, C3, h2, symmetric=True, log=True, G0=None
)
srgw_23 = log_23["srgw_dist"]
# 2) srGW(C3, h3, C2)
OT_32, log_32 = semirelaxed_gromov_wasserstein(
C3, C2, h3, symmetric=None, log=True, G0=OT.T
)
srgw_32 = log_32["srgw_dist"]
print("GW(C2, C3) = ", gw)
print("srGW(C2, h2, C3) = ", srgw_23)
print("srGW(C3, h3, C2) = ", srgw_32)
#############################################################################
#
# Visualization of the semi-relaxed Gromov-Wasserstein matchings
# --------------------------------------------------------------
#
# We color nodes of the graph on the right - then project its node colors
# based on the optimal transport plan from the srGW matching
def draw_graph(
G,
C,
nodes_color_part,
Gweights=None,
pos=None,
edge_color="black",
node_size=None,
shiftx=0,
seed=0,
):
if pos is None:
pos = networkx.spring_layout(G, scale=1.0, seed=seed)
if shiftx != 0:
for k, v in pos.items():
v[0] = v[0] + shiftx
alpha_edge = 0.7
width_edge = 1.8
if Gweights is None:
networkx.draw_networkx_edges(
G, pos, width=width_edge, alpha=alpha_edge, edge_color=edge_color
)
else:
# We make more visible connections between activated nodes
n = len(Gweights)
edgelist_activated = []
edgelist_deactivated = []
for i in range(n):
for j in range(n):
if Gweights[i] * Gweights[j] * C[i, j] > 0:
edgelist_activated.append((i, j))
elif C[i, j] > 0:
edgelist_deactivated.append((i, j))
networkx.draw_networkx_edges(
G,
pos,
edgelist=edgelist_activated,
width=width_edge,
alpha=alpha_edge,
edge_color=edge_color,
)
networkx.draw_networkx_edges(
G,
pos,
edgelist=edgelist_deactivated,
width=width_edge,
alpha=0.1,
edge_color=edge_color,
)
if Gweights is None:
for node, node_color in enumerate(nodes_color_part):
networkx.draw_networkx_nodes(
G,
pos,
nodelist=[node],
node_size=node_size,
alpha=1,
node_color=node_color,
)
else:
scaled_Gweights = Gweights / (0.5 * Gweights.max())
nodes_size = node_size * scaled_Gweights
for node, node_color in enumerate(nodes_color_part):
networkx.draw_networkx_nodes(
G,
pos,
nodelist=[node],
node_size=nodes_size[node],
alpha=1,
node_color=node_color,
)
return pos
def draw_transp_colored_srGW(
G1,
C1,
G2,
C2,
part_G1,
p1,
p2,
T,
pos1=None,
pos2=None,
shiftx=4,
switchx=False,
node_size=70,
seed_G1=0,
seed_G2=0,
):
starting_color = 0
# get graphs partition and their coloring
part1 = part_G1.copy()
unique_colors = ["C%s" % (starting_color + i) for i in np.unique(part1)]
nodes_color_part1 = []
for cluster in part1:
nodes_color_part1.append(unique_colors[cluster])
nodes_color_part2 = []
# T: getting colors assignment from argmin of columns
for i in range(len(G2.nodes())):
j = np.argmax(T[:, i])
nodes_color_part2.append(nodes_color_part1[j])
pos1 = draw_graph(
G1,
C1,
nodes_color_part1,
Gweights=p1,
pos=pos1,
node_size=node_size,
shiftx=0,
seed=seed_G1,
)
pos2 = draw_graph(
G2,
C2,
nodes_color_part2,
Gweights=p2,
pos=pos2,
node_size=node_size,
shiftx=shiftx,
seed=seed_G2,
)
for k1, v1 in pos1.items():
for k2, v2 in pos2.items():
if T[k1, k2] > 0:
pl.plot(
[pos1[k1][0], pos2[k2][0]],
[pos1[k1][1], pos2[k2][1]],
"-",
lw=0.8,
alpha=0.5,
color=nodes_color_part1[k1],
)
return pos1, pos2
node_size = 40
fontsize = 10
seed_G2 = 0
seed_G3 = 4
pl.figure(1, figsize=(8, 2.5))
pl.clf()
pl.subplot(121)
pl.axis("off")
pl.axis
pl.title(
r"srGW$(\mathbf{C_2},\mathbf{h_2},\mathbf{C_3}) =%s$" % (np.round(srgw_23, 3)),
fontsize=fontsize,
)
hbar2 = OT_23.sum(axis=0)
pos1, pos2 = draw_transp_colored_srGW(
weightedG2,
C2,
weightedG3,
C3,
part_G2,
p1=None,
p2=hbar2,
T=OT_23,
shiftx=1.5,
node_size=node_size,
seed_G1=seed_G2,
seed_G2=seed_G3,
)
pl.subplot(122)
pl.axis("off")
hbar3 = OT_32.sum(axis=0)
pl.title(
r"srGW$(\mathbf{C_3}, \mathbf{h_3},\mathbf{C_2}) =%s$" % (np.round(srgw_32, 3)),
fontsize=fontsize,
)
pos1, pos2 = draw_transp_colored_srGW(
weightedG3,
C3,
weightedG2,
C2,
part_G3,
p1=None,
p2=hbar3,
T=OT_32,
pos1=pos2,
pos2=pos1,
shiftx=3.0,
node_size=node_size,
seed_G1=0,
seed_G2=0,
)
pl.tight_layout()
pl.show()
#############################################################################
#
# Add node features
# -----------------
# We add node features with given mean - by clusters
# and inversely proportional to clusters' intra-connectivity
F2 = np.zeros((N2, 1))
for i, c in enumerate(part_G2):
F2[i, 0] = np.random.normal(loc=c, scale=0.01)
F3 = np.zeros((N3, 1))
for i, c in enumerate(part_G3):
F3[i, 0] = np.random.normal(loc=2.0 - c, scale=0.01)
#############################################################################
#
# Compute their semi-relaxed Fused Gromov-Wasserstein divergences
# ---------------------------------------------------------------
alpha = 0.5
# Compute pairwise euclidean distance between node features
M = (F2**2).dot(np.ones((1, N3))) + np.ones((N2, 1)).dot((F3**2).T) - 2 * F2.dot(F3.T)
# 0) FGW_alpha(C2, F2, h2, C3, F3, h3) for reference
OT, log = fused_gromov_wasserstein(
M, C2, C3, h2, h3, symmetric=True, alpha=alpha, log=True
)
fgw = log["fgw_dist"]
# 1) srFGW(C2, F2, h2, C3, F3)
OT_23, log_23 = semirelaxed_fused_gromov_wasserstein(
M, C2, C3, h2, symmetric=True, alpha=0.5, log=True, G0=None
)
srfgw_23 = log_23["srfgw_dist"]
# 2) srFGW(C3, F3, h3, C2, F2)
OT_32, log_32 = semirelaxed_fused_gromov_wasserstein(
M.T, C3, C2, h3, symmetric=None, alpha=alpha, log=True, G0=None
)
srfgw_32 = log_32["srfgw_dist"]
print("FGW(C2, F2, C3, F3) = ", fgw)
print("srGW(C2, F2, h2, C3, F3) = ", srfgw_23)
print("srGW(C3, F3, h3, C2, F2) = ", srfgw_32)
#############################################################################
#
# Visualization of the semi-relaxed Fused Gromov-Wasserstein matchings
# --------------------------------------------------------------------
#
# We color nodes of the graph on the right - then project its node colors
# based on the optimal transport plan from the srFGW matching
# NB: colors refer to clusters - not to node features
pl.figure(2, figsize=(8, 2.5))
pl.clf()
pl.subplot(121)
pl.axis("off")
pl.axis
pl.title(
r"srFGW$(\mathbf{C_2},\mathbf{F_2},\mathbf{h_2},\mathbf{C_3},\mathbf{F_3}) =%s$"
% (np.round(srfgw_23, 3)),
fontsize=fontsize,
)
hbar2 = OT_23.sum(axis=0)
pos1, pos2 = draw_transp_colored_srGW(
weightedG2,
C2,
weightedG3,
C3,
part_G2,
p1=None,
p2=hbar2,
T=OT_23,
shiftx=1.5,
node_size=node_size,
seed_G1=seed_G2,
seed_G2=seed_G3,
)
pl.subplot(122)
pl.axis("off")
hbar3 = OT_32.sum(axis=0)
pl.title(
r"srFGW$(\mathbf{C_3}, \mathbf{F_3}, \mathbf{h_3}, \mathbf{C_2}, \mathbf{F_2}) =%s$"
% (np.round(srfgw_32, 3)),
fontsize=fontsize,
)
pos1, pos2 = draw_transp_colored_srGW(
weightedG3,
C3,
weightedG2,
C2,
part_G3,
p1=None,
p2=hbar3,
T=OT_32,
pos1=pos2,
pos2=pos1,
shiftx=3.0,
node_size=node_size,
seed_G1=0,
seed_G2=0,
)
pl.tight_layout()
pl.show()
|