1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
# -*- coding: utf-8 -*-
"""
=======================================
Entropic Wasserstein Component Analysis
=======================================
This example illustrates the use of EWCA as proposed in [52].
[52] Collas, A., Vayer, T., Flamary, F., & Breloy, A. (2023).
Entropic Wasserstein Component Analysis.
"""
# Author: Antoine Collas <antoine.collas@inria.fr>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 2
import numpy as np
import matplotlib.pylab as pl
from ot.dr import ewca
from sklearn.datasets import make_blobs
from matplotlib import ticker as mticker
import matplotlib.patches as patches
import matplotlib
##############################################################################
# Generate data
# -------------
n_samples = 20
esp = 0.8
centers = np.array([[esp, esp], [-esp, -esp]])
cluster_std = 0.4
rng = np.random.RandomState(42)
X, y = make_blobs(
n_samples=n_samples,
n_features=2,
centers=centers,
cluster_std=cluster_std,
shuffle=False,
random_state=rng,
)
X = X - X.mean(0)
##############################################################################
# Plot data
# -------------
fig = pl.figure(figsize=(4, 4))
cmap = matplotlib.colormaps.get_cmap("tab10")
pl.scatter(
X[: n_samples // 2, 0],
X[: n_samples // 2, 1],
color=[cmap(y[i] + 1) for i in range(n_samples // 2)],
alpha=0.4,
label="Class 1",
zorder=30,
s=50,
)
pl.scatter(
X[n_samples // 2 :, 0],
X[n_samples // 2 :, 1],
color=[cmap(y[i] + 1) for i in range(n_samples // 2, n_samples)],
alpha=0.4,
label="Class 2",
zorder=30,
s=50,
)
x_y_lim = 2.5
fs = 15
pl.xlim(-x_y_lim, x_y_lim)
pl.xticks([])
pl.ylim(-x_y_lim, x_y_lim)
pl.yticks([])
pl.legend(fontsize=fs)
pl.title("Data", fontsize=fs)
pl.tight_layout()
##############################################################################
# Compute EWCA
# -------------
pi, U = ewca(X, k=2, reg=0.5)
##############################################################################
# Plot data, first component, and projected data
# -------------
fig = pl.figure(figsize=(4, 4))
scale = 3
u = U[:, 0]
pl.plot(
[scale * u[0], -scale * u[0]],
[scale * u[1], -scale * u[1]],
color="grey",
linestyle="--",
lw=3,
alpha=0.3,
label=r"$\mathbf{U}$",
)
X1 = X @ u[:, None] @ u[:, None].T
for i in range(n_samples):
for j in range(n_samples):
v = pi[i, j] / pi.max()
if v >= 0.15 or (i, j) == (n_samples - 1, n_samples - 1):
pl.plot(
[X[i, 0], X1[j, 0]],
[X[i, 1], X1[j, 1]],
alpha=v,
linestyle="-",
c="C0",
label=r"$\pi_{ij}$"
if (i, j) == (n_samples - 1, n_samples - 1)
else None,
)
pl.scatter(
X[:, 0],
X[:, 1],
color=[cmap(y[i] + 1) for i in range(n_samples)],
alpha=0.4,
label=r"$\mathbf{x}_i$",
zorder=30,
s=50,
)
pl.scatter(
X1[:, 0],
X1[:, 1],
color=[cmap(y[i] + 1) for i in range(n_samples)],
alpha=0.9,
s=50,
marker="+",
label=r"$\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i$",
zorder=30,
)
pl.title("Data and projections", fontsize=fs)
pl.xlim(-x_y_lim, x_y_lim)
pl.xticks([])
pl.ylim(-x_y_lim, x_y_lim)
pl.yticks([])
pl.legend(fontsize=fs, loc="upper left")
pl.tight_layout()
##############################################################################
# Plot transport plan
# -------------
fig = pl.figure(figsize=(5, 5))
norm = matplotlib.colors.PowerNorm(0.5, vmin=0, vmax=100)
im = pl.imshow(n_samples * pi * 100, cmap=pl.cm.Blues, norm=norm, aspect="auto")
cb = fig.colorbar(im, orientation="vertical", shrink=0.8)
ticks_loc = cb.ax.get_yticks().tolist()
cb.ax.yaxis.set_major_locator(mticker.FixedLocator(ticks_loc))
cb.ax.set_yticklabels([f"{int(i)}%" for i in cb.get_ticks()])
cb.ax.tick_params(labelsize=fs)
for i, class_ in enumerate(np.sort(np.unique(y))):
indices = y == class_
idx_min = np.min(np.arange(len(y))[indices])
idx_max = np.max(np.arange(len(y))[indices])
width = idx_max - idx_min + 1
rect = patches.Rectangle(
(idx_min - 0.5, idx_min - 0.5),
width,
width,
linewidth=1,
edgecolor="r",
facecolor="none",
)
pl.gca().add_patch(rect)
pl.title("OT plan", fontsize=fs)
pl.ylabel(r"($\mathbf{x}_1, \cdots, \mathbf{x}_n$)")
x_label = r"($\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_1, \cdots,"
x_label += r"\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_n$)"
pl.xlabel(x_label)
pl.tight_layout()
pl.axis("scaled")
pl.show()
|