File: plot_dmmot.py

package info (click to toggle)
python-pot 0.9.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,884 kB
  • sloc: python: 56,498; cpp: 2,310; makefile: 265; sh: 19
file content (160 lines) | stat: -rw-r--r-- 4,441 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
r"""
===============================================================================
Computing d-dimensional Barycenters via d-MMOT
===============================================================================

When the cost is discretized (Monge), the d-MMOT solver can more quickly
compute and minimize the distance between many distributions without the need
for intermediate barycenter computations. This example compares the time to
identify, and the quality of, solutions for the d-MMOT problem using a
primal/dual algorithm and classical LP barycenter approaches.
"""

# Author: Ronak Mehta <ronakrm@cs.wisc.edu>
#         Xizheng Yu <xyu354@wisc.edu>
#
# License: MIT License

# %%
# Generating 2 distributions
# -----
import numpy as np
import matplotlib.pyplot as pl
import ot

np.random.seed(0)

n = 100
d = 2
# Gaussian distributions
a1 = ot.datasets.make_1D_gauss(n, m=20, s=5)  # m=mean, s=std
a2 = ot.datasets.make_1D_gauss(n, m=60, s=8)
A = np.vstack((a1, a2)).T
x = np.arange(n, dtype=np.float64)
M = ot.utils.dist(x.reshape((n, 1)), metric="minkowski")

pl.figure(1, figsize=(6.4, 3))
pl.plot(x, a1, "b", label="Source distribution")
pl.plot(x, a2, "r", label="Target distribution")
pl.legend()

# %%
# Minimize the distances among distributions, identify the Barycenter
# -----
# The objective being minimized is different for both methods, so the objective
# values cannot be compared.

# L2 Iteration
weights = np.ones(d) / d
l2_bary = A.dot(weights)

print("LP Iterations:")
weights = np.ones(d) / d
lp_bary, lp_log = ot.lp.barycenter(
    A, M, weights, solver="interior-point", verbose=False, log=True
)
print("Time\t: ", ot.toc(""))
print("Obj\t: ", lp_log["fun"])

print("")
print("Discrete MMOT Algorithm:")
ot.tic()
barys, log = ot.lp.dmmot_monge_1dgrid_optimize(
    A, niters=4000, lr_init=1e-5, lr_decay=0.997, log=True
)
dmmot_obj = log["primal objective"]
print("Time\t: ", ot.toc(""))
print("Obj\t: ", dmmot_obj)

# %%
# Compare Barycenters in both methods
# -----
pl.figure(1, figsize=(6.4, 3))
for i in range(len(barys)):
    if i == 0:
        pl.plot(x, barys[i], "g-*", label="Discrete MMOT")
    else:
        continue
        # pl.plot(x, barys[i], 'g-*')
pl.plot(x, lp_bary, label="LP Barycenter")
pl.plot(x, l2_bary, label="L2 Barycenter")
pl.plot(x, a1, "b", label="Source distribution")
pl.plot(x, a2, "r", label="Target distribution")
pl.title("Monge Cost: Barycenters from LP Solver and dmmot solver")
pl.legend()


# %%
# More than 2 distributions
# --------------------------------------------------
# Generate 7 pseudorandom gaussian distributions with 50 bins.
n = 50  # nb bins
d = 7
vecsize = n * d

data = []
for i in range(d):
    m = n * (0.5 * np.random.rand(1)) * float(np.random.randint(2) + 1)
    a = ot.datasets.make_1D_gauss(n, m=m, s=5)
    data.append(a)

x = np.arange(n, dtype=np.float64)
M = ot.utils.dist(x.reshape((n, 1)), metric="minkowski")
A = np.vstack(data).T

pl.figure(1, figsize=(6.4, 3))
for i in range(len(data)):
    pl.plot(x, data[i])

pl.title("Distributions")
pl.legend()

# %%
# Minimizing Distances Among Many Distributions
# ---------------
# The objective being minimized is different for both methods, so the objective
# values cannot be compared.

# Perform gradient descent optimization using the d-MMOT method.
barys = ot.lp.dmmot_monge_1dgrid_optimize(A, niters=3000, lr_init=1e-4, lr_decay=0.997)

# after minimization, any distribution can be used as a estimate of barycenter.
bary = barys[0]

# Compute 1D Wasserstein barycenter using the L2/LP method
weights = ot.unif(d)
l2_bary = A.dot(weights)
lp_bary, bary_log = ot.lp.barycenter(
    A, M, weights, solver="interior-point", verbose=False, log=True
)

# %%
# Compare Barycenters in both methods
# ---------
pl.figure(1, figsize=(6.4, 3))
pl.plot(x, bary, "g-*", label="Discrete MMOT")
pl.plot(x, l2_bary, "k", label="L2 Barycenter")
pl.plot(x, lp_bary, "k-", label="LP Wasserstein")
pl.title("Barycenters")
pl.legend()

# %%
# Compare with original distributions
# ---------
pl.figure(1, figsize=(6.4, 3))
for i in range(len(data)):
    pl.plot(x, data[i])
for i in range(len(barys)):
    if i == 0:
        pl.plot(x, barys[i], "g-*", label="Discrete MMOT")
    else:
        continue
        # pl.plot(x, barys[i], 'g')
pl.plot(x, l2_bary, "k^", label="L2")
pl.plot(x, lp_bary, "o", color="grey", label="LP")
pl.title("Barycenters")
pl.legend()
pl.show()

# %%