1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
# -*- coding: utf-8 -*-
r"""
=======================
Logo of the POT toolbox
=======================
In this example we plot the logo of the POT toolbox.
This logo is that it is done 100% in Python and generated using
matplotlib and plotting the solution of the EMD solver from POT.
"""
# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 1
# %% Load modules
import numpy as np
import matplotlib.pyplot as pl
import ot
# %%
# Data for logo
# -------------
# Letter P
p1 = np.array(
[
[0, 6.0],
[0, 5],
[0, 4],
[0, 3],
[0, 2],
[0, 1],
]
)
p2 = np.array(
[
[1.5, 6],
[2, 4],
[2, 5],
[1.5, 3],
[0.5, 2],
[0.5, 1],
]
)
# Letter O
o1 = np.array(
[
[0, 6.0],
[-1, 5],
[-1.5, 4],
[-1.5, 3],
[-1, 2],
[0, 1],
]
)
o2 = np.array(
[
[1, 6.0],
[2, 5],
[2.5, 4],
[2.5, 3],
[2, 2],
[1, 1],
]
)
# Scaling and translation for letter O
o1[:, 0] += 6.4
o2[:, 0] += 6.4
o1[:, 0] *= 0.6
o2[:, 0] *= 0.6
# Letter T
t1 = np.array(
[
[-1, 6.0],
[-1, 5],
[0, 4],
[0, 3],
[0, 2],
[0, 1],
]
)
t2 = np.array(
[
[1.5, 6.0],
[1.5, 5],
[0.5, 4],
[0.5, 3],
[0.5, 2],
[0.5, 1],
]
)
# Translating the T
t1[:, 0] += 7.1
t2[:, 0] += 7.1
# Concatenate all letters
x1 = np.concatenate((p1, o1, t1), axis=0)
x2 = np.concatenate((p2, o2, t2), axis=0)
# Horizontal and vertical scaling
sx = 1.0
sy = 0.5
x1[:, 0] *= sx
x1[:, 1] *= sy
x2[:, 0] *= sx
x2[:, 1] *= sy
# %%
# Plot the logo (clear background)
# --------------------------------
# Solve OT problem between the points
M = ot.dist(x1, x2, metric="euclidean")
T = ot.emd([], [], M)
pl.figure(1, (3.5, 1.1))
pl.clf()
# plot the OT plan
for i in range(M.shape[0]):
for j in range(M.shape[1]):
if T[i, j] > 1e-8:
pl.plot(
[x1[i, 0], x2[j, 0]],
[x1[i, 1], x2[j, 1]],
color="k",
alpha=0.6,
linewidth=3,
zorder=1,
)
# plot the samples
pl.plot(x1[:, 0], x1[:, 1], "o", markerfacecolor="C3", markeredgecolor="k")
pl.plot(x2[:, 0], x2[:, 1], "o", markerfacecolor="b", markeredgecolor="k")
pl.axis("equal")
pl.axis("off")
# Save logo file
# pl.savefig('logo.svg', dpi=150, transparent=True, bbox_inches='tight')
# pl.savefig('logo.png', dpi=150, transparent=True, bbox_inches='tight')
# %%
# Plot the logo (dark background)
# --------------------------------
pl.figure(2, (3.5, 1.1), facecolor="darkgray")
pl.clf()
# plot the OT plan
for i in range(M.shape[0]):
for j in range(M.shape[1]):
if T[i, j] > 1e-8:
pl.plot(
[x1[i, 0], x2[j, 0]],
[x1[i, 1], x2[j, 1]],
color="w",
alpha=0.8,
linewidth=3,
zorder=1,
)
# plot the samples
pl.plot(x1[:, 0], x1[:, 1], "o", markerfacecolor="w", markeredgecolor="w")
pl.plot(x2[:, 0], x2[:, 1], "o", markerfacecolor="w", markeredgecolor="w")
pl.axis("equal")
pl.axis("off")
# Save logo file
# pl.savefig('logo_dark.svg', dpi=150, transparent=True, bbox_inches='tight')
# pl.savefig('logo_dark.png', dpi=150, transparent=True, bbox_inches='tight')
|