1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
# -*- coding: utf-8 -*-
"""
========================================
Low rank Gromov-Wasterstein between samples
========================================
Comparison between entropic Gromov-Wasserstein and Low Rank Gromov Wasserstein [67]
on two curves in 2D and 3D, both sampled with 200 points.
The squared Euclidean distance is considered as the ground cost for both samples.
[67] Scetbon, M., Peyré, G. & Cuturi, M. (2022).
"Linear-Time GromovWasserstein Distances using Low Rank Couplings and Costs".
In International Conference on Machine Learning (ICML), 2022.
"""
# Author: Laurène David <laurene.david@ip-paris.fr>
#
# License: MIT License
#
# sphinx_gallery_thumbnail_number = 3
# %%
import numpy as np
import matplotlib.pylab as pl
import ot.plot
import time
##############################################################################
# Generate data
# -------------
# %% parameters
n_samples = 200
# Generate 2D and 3D curves
theta = np.linspace(-4 * np.pi, 4 * np.pi, n_samples)
z = np.linspace(1, 2, n_samples)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
# Source and target distribution
X = np.concatenate([x.reshape(-1, 1), z.reshape(-1, 1)], axis=1)
Y = np.concatenate([x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], axis=1)
##############################################################################
# Plot data
# ------------
# %%
# Plot the source and target samples
fig = pl.figure(1, figsize=(10, 4))
ax = fig.add_subplot(121)
ax.plot(X[:, 0], X[:, 1], color="blue", linewidth=6)
ax.tick_params(
left=False, right=False, labelleft=False, labelbottom=False, bottom=False
)
ax.set_title("2D curve (source)")
ax2 = fig.add_subplot(122, projection="3d")
ax2.plot(Y[:, 0], Y[:, 1], Y[:, 2], c="red", linewidth=6)
ax2.tick_params(
left=False, right=False, labelleft=False, labelbottom=False, bottom=False
)
ax2.view_init(15, -50)
ax2.set_title("3D curve (target)")
pl.tight_layout()
pl.show()
##############################################################################
# Entropic Gromov-Wasserstein
# ------------
# %%
# Compute cost matrices
C1 = ot.dist(X, X, metric="sqeuclidean")
C2 = ot.dist(Y, Y, metric="sqeuclidean")
# Scale cost matrices
r1 = C1.max()
r2 = C2.max()
C1 = C1 / r1
C2 = C2 / r2
# Solve entropic gw
reg = 5 * 1e-3
start = time.time()
gw, log = ot.gromov.entropic_gromov_wasserstein(
C1, C2, tol=1e-3, epsilon=reg, log=True, verbose=False
)
end = time.time()
time_entropic = end - start
entropic_gw_loss = np.round(log["gw_dist"], 3)
# Plot entropic gw
pl.figure(2)
pl.imshow(gw, interpolation="nearest", aspect="auto")
pl.title("Entropic Gromov-Wasserstein (loss={})".format(entropic_gw_loss))
pl.show()
##############################################################################
# Low rank squared euclidean cost matrices
# ------------
# %%
# Compute the low rank sqeuclidean cost decompositions
A1, A2 = ot.lowrank.compute_lr_sqeuclidean_matrix(X, X, rescale_cost=False)
B1, B2 = ot.lowrank.compute_lr_sqeuclidean_matrix(Y, Y, rescale_cost=False)
# Scale the low rank cost matrices
A1, A2 = A1 / np.sqrt(r1), A2 / np.sqrt(r1)
B1, B2 = B1 / np.sqrt(r2), B2 / np.sqrt(r2)
##############################################################################
# Low rank Gromov-Wasserstein
# ------------
# %%
# Solve low rank gromov-wasserstein with different ranks
list_rank = [10, 50]
list_P_GW = []
list_loss_GW = []
list_time_GW = []
for rank in list_rank:
start = time.time()
Q, R, g, log = ot.lowrank_gromov_wasserstein_samples(
X,
Y,
reg=0,
rank=rank,
rescale_cost=False,
cost_factorized_Xs=(A1, A2),
cost_factorized_Xt=(B1, B2),
seed_init=49,
numItermax=1000,
log=True,
stopThr=1e-6,
)
end = time.time()
P = log["lazy_plan"][:]
loss = log["value"]
list_P_GW.append(P)
list_loss_GW.append(np.round(loss, 3))
list_time_GW.append(end - start)
# %%
# Plot low rank GW with different ranks
pl.figure(3, figsize=(10, 4))
pl.subplot(1, 2, 1)
pl.imshow(list_P_GW[0], interpolation="nearest", aspect="auto")
pl.title("Low rank GW (rank=10, loss={})".format(list_loss_GW[0]))
pl.subplot(1, 2, 2)
pl.imshow(list_P_GW[1], interpolation="nearest", aspect="auto")
pl.title("Low rank GW (rank=50, loss={})".format(list_loss_GW[1]))
pl.tight_layout()
pl.show()
# %%
# Compare computation time between entropic GW and low rank GW
print("Entropic GW: {:.2f}s".format(time_entropic))
print("Low rank GW (rank=10): {:.2f}s".format(list_time_GW[0]))
print("Low rank GW (rank=50): {:.2f}s".format(list_time_GW[1]))
|