File: plot_lowrank_GW.py

package info (click to toggle)
python-pot 0.9.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 3,884 kB
  • sloc: python: 56,498; cpp: 2,310; makefile: 265; sh: 19
file content (184 lines) | stat: -rw-r--r-- 4,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# -*- coding: utf-8 -*-
"""
========================================
Low rank Gromov-Wasterstein between samples
========================================

Comparison between entropic Gromov-Wasserstein and Low Rank Gromov Wasserstein [67]
on two curves in 2D and 3D, both sampled with 200 points.

The squared Euclidean distance is considered as the ground cost for both samples.

[67] Scetbon, M., Peyré, G. & Cuturi, M. (2022).
"Linear-Time GromovWasserstein Distances using Low Rank Couplings and Costs".
In International Conference on Machine Learning (ICML), 2022.
"""

# Author: Laurène David <laurene.david@ip-paris.fr>
#
# License: MIT License
#
# sphinx_gallery_thumbnail_number = 3

# %%
import numpy as np
import matplotlib.pylab as pl
import ot.plot
import time

##############################################################################
# Generate data
# -------------

# %% parameters
n_samples = 200

# Generate 2D and 3D curves
theta = np.linspace(-4 * np.pi, 4 * np.pi, n_samples)
z = np.linspace(1, 2, n_samples)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)

# Source and target distribution
X = np.concatenate([x.reshape(-1, 1), z.reshape(-1, 1)], axis=1)
Y = np.concatenate([x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], axis=1)


##############################################################################
# Plot data
# ------------

# %%
# Plot the source and target samples
fig = pl.figure(1, figsize=(10, 4))

ax = fig.add_subplot(121)
ax.plot(X[:, 0], X[:, 1], color="blue", linewidth=6)
ax.tick_params(
    left=False, right=False, labelleft=False, labelbottom=False, bottom=False
)
ax.set_title("2D curve (source)")

ax2 = fig.add_subplot(122, projection="3d")
ax2.plot(Y[:, 0], Y[:, 1], Y[:, 2], c="red", linewidth=6)
ax2.tick_params(
    left=False, right=False, labelleft=False, labelbottom=False, bottom=False
)
ax2.view_init(15, -50)
ax2.set_title("3D curve (target)")

pl.tight_layout()
pl.show()


##############################################################################
# Entropic Gromov-Wasserstein
# ------------

# %%

# Compute cost matrices
C1 = ot.dist(X, X, metric="sqeuclidean")
C2 = ot.dist(Y, Y, metric="sqeuclidean")

# Scale cost matrices
r1 = C1.max()
r2 = C2.max()

C1 = C1 / r1
C2 = C2 / r2


# Solve entropic gw
reg = 5 * 1e-3

start = time.time()
gw, log = ot.gromov.entropic_gromov_wasserstein(
    C1, C2, tol=1e-3, epsilon=reg, log=True, verbose=False
)

end = time.time()
time_entropic = end - start

entropic_gw_loss = np.round(log["gw_dist"], 3)

# Plot entropic gw
pl.figure(2)
pl.imshow(gw, interpolation="nearest", aspect="auto")
pl.title("Entropic Gromov-Wasserstein (loss={})".format(entropic_gw_loss))
pl.show()


##############################################################################
# Low rank squared euclidean cost matrices
# ------------
# %%

# Compute the low rank sqeuclidean cost decompositions
A1, A2 = ot.lowrank.compute_lr_sqeuclidean_matrix(X, X, rescale_cost=False)
B1, B2 = ot.lowrank.compute_lr_sqeuclidean_matrix(Y, Y, rescale_cost=False)

# Scale the low rank cost matrices
A1, A2 = A1 / np.sqrt(r1), A2 / np.sqrt(r1)
B1, B2 = B1 / np.sqrt(r2), B2 / np.sqrt(r2)


##############################################################################
# Low rank Gromov-Wasserstein
# ------------
# %%

# Solve low rank gromov-wasserstein with different ranks
list_rank = [10, 50]
list_P_GW = []
list_loss_GW = []
list_time_GW = []

for rank in list_rank:
    start = time.time()

    Q, R, g, log = ot.lowrank_gromov_wasserstein_samples(
        X,
        Y,
        reg=0,
        rank=rank,
        rescale_cost=False,
        cost_factorized_Xs=(A1, A2),
        cost_factorized_Xt=(B1, B2),
        seed_init=49,
        numItermax=1000,
        log=True,
        stopThr=1e-6,
    )
    end = time.time()

    P = log["lazy_plan"][:]
    loss = log["value"]

    list_P_GW.append(P)
    list_loss_GW.append(np.round(loss, 3))
    list_time_GW.append(end - start)


# %%
# Plot low rank GW with different ranks
pl.figure(3, figsize=(10, 4))

pl.subplot(1, 2, 1)
pl.imshow(list_P_GW[0], interpolation="nearest", aspect="auto")
pl.title("Low rank GW (rank=10, loss={})".format(list_loss_GW[0]))

pl.subplot(1, 2, 2)
pl.imshow(list_P_GW[1], interpolation="nearest", aspect="auto")
pl.title("Low rank GW (rank=50, loss={})".format(list_loss_GW[1]))

pl.tight_layout()
pl.show()


# %%
# Compare computation time between entropic GW and low rank GW
print("Entropic GW: {:.2f}s".format(time_entropic))
print("Low rank GW (rank=10): {:.2f}s".format(list_time_GW[0]))
print("Low rank GW (rank=50): {:.2f}s".format(list_time_GW[1]))