File: plot_lowrank_sinkhorn.py

package info (click to toggle)
python-pot 0.9.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,884 kB
  • sloc: python: 56,498; cpp: 2,310; makefile: 265; sh: 19
file content (139 lines) | stat: -rw-r--r-- 3,093 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
"""
========================================
Low rank Sinkhorn
========================================

This example illustrates the computation of Low Rank Sinkhorn [26].

[65] Scetbon, M., Cuturi, M., & Peyré, G. (2021).
"Low-rank Sinkhorn factorization". In International Conference on Machine Learning.
"""

# Author: Laurène David <laurene.david@ip-paris.fr>
#
# License: MIT License
#
# sphinx_gallery_thumbnail_number = 2

import numpy as np
import matplotlib.pylab as pl
import ot.plot
from ot.datasets import make_1D_gauss as gauss

##############################################################################
# Generate data
# -------------

# %% parameters

n = 100
m = 120

# Gaussian distribution
a = gauss(n, m=int(n / 3), s=25 / np.sqrt(2)) + 1.5 * gauss(
    n, m=int(5 * n / 6), s=15 / np.sqrt(2)
)
a = a / np.sum(a)

b = 2 * gauss(m, m=int(m / 5), s=30 / np.sqrt(2)) + gauss(
    m, m=int(m / 2), s=35 / np.sqrt(2)
)
b = b / np.sum(b)

# Source and target distribution
X = np.arange(n).reshape(-1, 1)
Y = np.arange(m).reshape(-1, 1)


##############################################################################
# Solve Low rank sinkhorn
# ------------

# %%
# Solve low rank sinkhorn
Q, R, g, log = ot.lowrank_sinkhorn(
    X,
    Y,
    a,
    b,
    rank=10,
    init="random",
    gamma_init="rescale",
    rescale_cost=True,
    warn=False,
    log=True,
)
P = log["lazy_plan"][:]

ot.plot.plot1D_mat(a, b, P, "OT matrix Low rank")


##############################################################################
# Sinkhorn vs Low Rank Sinkhorn
# -----------------------
# Compare Sinkhorn and Low rank sinkhorn with different regularizations and ranks.

# %% Sinkhorn

# Compute cost matrix for sinkhorn OT
M = ot.dist(X, Y)
M = M / np.max(M)

# Solve sinkhorn with different regularizations using ot.solve
list_reg = [0.05, 0.005, 0.001]
list_P_Sin = []

for reg in list_reg:
    P = ot.solve(M, a, b, reg=reg, max_iter=2000, tol=1e-8).plan
    list_P_Sin.append(P)

# %% Low rank sinkhorn

# Solve low rank sinkhorn with different ranks using ot.solve_sample
list_rank = [3, 10, 50]
list_P_LR = []

for rank in list_rank:
    P = ot.solve_sample(X, Y, a, b, method="lowrank", rank=rank).plan
    P = P[:]
    list_P_LR.append(P)


# %%

# Plot sinkhorn vs low rank sinkhorn
pl.figure(1, figsize=(10, 8))

pl.subplot(2, 3, 1)
pl.imshow(list_P_Sin[0], interpolation="nearest")
pl.axis("off")
pl.title("Sinkhorn (reg=0.05)")

pl.subplot(2, 3, 2)
pl.imshow(list_P_Sin[1], interpolation="nearest")
pl.axis("off")
pl.title("Sinkhorn (reg=0.005)")

pl.subplot(2, 3, 3)
pl.imshow(list_P_Sin[2], interpolation="nearest")
pl.axis("off")
pl.title("Sinkhorn (reg=0.001)")
pl.show()

pl.subplot(2, 3, 4)
pl.imshow(list_P_LR[0], interpolation="nearest")
pl.axis("off")
pl.title("Low rank (rank=3)")

pl.subplot(2, 3, 5)
pl.imshow(list_P_LR[1], interpolation="nearest")
pl.axis("off")
pl.title("Low rank (rank=10)")

pl.subplot(2, 3, 6)
pl.imshow(list_P_LR[2], interpolation="nearest")
pl.axis("off")
pl.title("Low rank (rank=50)")

pl.tight_layout()