1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
# -*- coding: utf-8 -*-
r"""
======================================================================================================================================
Detecting outliers by learning sample marginal distribution with CO-Optimal Transport and by using unbalanced Co-Optimal Transport
======================================================================================================================================
In this example, we consider two point clouds living in different Euclidean spaces, where the outliers
are artificially injected into the target data. We illustrate two methods which allow to filter out
these outliers.
The first method requires learning the sample marginal distribution which minimizes
the CO-Optimal Transport distance [49] between two input spaces.
More precisely, given a source data
:math:`(X, \mu_x^{(s)}, \mu_x^{(f)})` and a target matrix :math:`Y` associated with a fixed
histogram on features :math:`\mu_y^{(f)}`, we want to solve the following problem
.. math::
\min_{\mu_y^{(s)} \in \Delta} \text{COOT}\left( (X, \mu_x^{(s)}, \mu_x^{(f)}), (Y, \mu_y^{(s)}, \mu_y^{(f)}) \right)
where :math:`\Delta` is the probability simplex. This minimization is done with a
simple projected gradient descent in PyTorch. We use the automatic backend of POT that
allows us to compute the CO-Optimal Transport distance with :func:`ot.coot.co_optimal_transport2`
with differentiable losses.
The second method simply requires direct application of unbalanced Co-Optimal Transport [71].
More precisely, it is enough to use the sample and feature coupling from solving
.. math::
\text{UCOOT}\left( (X, \mu_x^{(s)}, \mu_x^{(f)}), (Y, \mu_y^{(s)}, \mu_y^{(f)}) \right)
where all the marginal distributions are uniform.
.. [49] Redko, I., Vayer, T., Flamary, R., and Courty, N. (2020).
`CO-Optimal Transport <https://proceedings.neurips.cc/paper/2020/file/cc384c68ad503482fb24e6d1e3b512ae-Paper.pdf>`_.
Advances in Neural Information Processing Systems, 33.
.. [71] H. Tran, H. Janati, N. Courty, R. Flamary, I. Redko, P. Demetci & R. Singh (2023). [Unbalanced Co-Optimal Transport](https://dl.acm.org/doi/10.1609/aaai.v37i8.26193).
AAAI Conference on Artificial Intelligence.
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
# Quang Huy Tran <quang-huy.tran@univ-ubs.fr>
# License: MIT License
from matplotlib.patches import ConnectionPatch
import torch
import numpy as np
import matplotlib.pyplot as pl
import ot
from ot.coot import co_optimal_transport as coot
from ot.coot import co_optimal_transport2 as coot2
from ot.gromov._unbalanced import unbalanced_co_optimal_transport
# %%
# Generate data
# -------------
# The source and clean target matrices are generated by
# :math:`X_{i,j} = \cos(\frac{i}{n_1} \pi) + \cos(\frac{j}{d_1} \pi)` and
# :math:`Y_{i,j} = \cos(\frac{i}{n_2} \pi) + \cos(\frac{j}{d_2} \pi)`.
# The target matrix is then contaminated by adding 5 row outliers.
# Intuitively, we expect that the estimated sample distribution should ignore these outliers,
# i.e. their weights should be zero.
np.random.seed(182)
n1, d1 = 20, 16
n2, d2 = 10, 8
n = 15
X = (
torch.cos(torch.arange(n1) * torch.pi / n1)[:, None]
+ torch.cos(torch.arange(d1) * torch.pi / d1)[None, :]
)
# Generate clean target data mixed with outliers
Y_noisy = torch.randn((n, d2)) * 10.0
Y_noisy[:n2, :] = (
torch.cos(torch.arange(n2) * torch.pi / n2)[:, None]
+ torch.cos(torch.arange(d2) * torch.pi / d2)[None, :]
)
Y = Y_noisy[:n2, :]
X, Y_noisy, Y = X.double(), Y_noisy.double(), Y.double()
fig, axes = pl.subplots(nrows=1, ncols=3, figsize=(12, 5))
axes[0].imshow(X, vmin=-2, vmax=2)
axes[0].set_title("$X$")
axes[1].imshow(Y, vmin=-2, vmax=2)
axes[1].set_title("Clean $Y$")
axes[2].imshow(Y_noisy, vmin=-2, vmax=2)
axes[2].set_title("Noisy $Y$")
pl.tight_layout()
# %%
# Optimize the COOT distance with respect to the sample marginal distribution
# ---------------------------------------------------------------------------
losses = []
lr = 1e-3
niter = 1000
b = torch.tensor(ot.unif(n), requires_grad=True)
for i in range(niter):
loss = coot2(X, Y_noisy, wy_samp=b, log=False, verbose=False)
losses.append(float(loss))
loss.backward()
with torch.no_grad():
b -= lr * b.grad # gradient step
b[:] = ot.utils.proj_simplex(b) # projection on the simplex
b.grad.zero_()
# Estimated sample marginal distribution and training loss curve
pl.plot(losses[10:])
pl.title("CO-Optimal Transport distance")
print(f"Marginal distribution = {b.detach().numpy()}")
# %%
# Visualizing the row and column alignments with the estimated sample marginal distribution
# -----------------------------------------------------------------------------------------
#
# Clearly, the learned marginal distribution completely and successfully ignores the 5 outliers.
X, Y_noisy = X.numpy(), Y_noisy.numpy()
b = b.detach().numpy()
pi_sample, pi_feature = coot(X, Y_noisy, wy_samp=b, log=False, verbose=True)
fig = pl.figure(4, (9, 7))
pl.clf()
ax1 = pl.subplot(2, 2, 3)
pl.imshow(X, vmin=-2, vmax=2)
pl.xlabel("$X$")
ax2 = pl.subplot(2, 2, 2)
ax2.yaxis.tick_right()
pl.imshow(np.transpose(Y_noisy), vmin=-2, vmax=2)
pl.title("Transpose(Noisy $Y$)")
ax2.xaxis.tick_top()
for i in range(n1):
j = np.argmax(pi_sample[i, :])
xyA = (d1 - 0.5, i)
xyB = (j, d2 - 0.5)
con = ConnectionPatch(
xyA=xyA, xyB=xyB, coordsA=ax1.transData, coordsB=ax2.transData, color="black"
)
fig.add_artist(con)
for i in range(d1):
j = np.argmax(pi_feature[i, :])
xyA = (i, -0.5)
xyB = (-0.5, j)
con = ConnectionPatch(
xyA=xyA, xyB=xyB, coordsA=ax1.transData, coordsB=ax2.transData, color="blue"
)
fig.add_artist(con)
# %%
# Now, let see if we can use unbalanced Co-Optimal Transport to recover the clean OT plans,
# without the need of learning the marginal distribution as in Co-Optimal Transport.
# -----------------------------------------------------------------------------------------
pi_sample, pi_feature = unbalanced_co_optimal_transport(
X=X,
Y=Y_noisy,
reg_marginals=(10, 10),
epsilon=0,
divergence="kl",
unbalanced_solver="mm",
max_iter=1000,
tol=1e-6,
max_iter_ot=1000,
tol_ot=1e-6,
log=False,
verbose=False,
)
# %%
# Visualizing the row and column alignments learned by unbalanced Co-Optimal Transport.
# -----------------------------------------------------------------------------------------
#
# Similar to Co-Optimal Transport, we are also be able to fully recover the clean OT plans.
fig = pl.figure(4, (9, 7))
pl.clf()
ax1 = pl.subplot(2, 2, 3)
pl.imshow(X, vmin=-2, vmax=2)
pl.xlabel("$X$")
ax2 = pl.subplot(2, 2, 2)
ax2.yaxis.tick_right()
pl.imshow(np.transpose(Y_noisy), vmin=-2, vmax=2)
pl.title("Transpose(Noisy $Y$)")
ax2.xaxis.tick_top()
for i in range(n1):
j = np.argmax(pi_sample[i, :])
xyA = (d1 - 0.5, i)
xyB = (j, d2 - 0.5)
con = ConnectionPatch(
xyA=xyA, xyB=xyB, coordsA=ax1.transData, coordsB=ax2.transData, color="black"
)
fig.add_artist(con)
for i in range(d1):
j = np.argmax(pi_feature[i, :])
xyA = (i, -0.5)
xyB = (-0.5, j)
con = ConnectionPatch(
xyA=xyA, xyB=xyB, coordsA=ax1.transData, coordsB=ax2.transData, color="blue"
)
fig.add_artist(con)
|