File: plot_screenkhorn_1D.py

package info (click to toggle)
python-pot 0.9.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 3,884 kB
  • sloc: python: 56,498; cpp: 2,310; makefile: 265; sh: 19
file content (73 lines) | stat: -rw-r--r-- 2,000 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
"""
========================================
Screened optimal transport (Screenkhorn)
========================================

This example illustrates the computation of Screenkhorn [26].

[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019).
Screening Sinkhorn Algorithm for Regularized Optimal Transport,
Advances in Neural Information Processing Systems 33 (NeurIPS).
"""

# Author: Mokhtar Z. Alaya <mokhtarzahdi.alaya@gmail.com>
#
# License: MIT License

import numpy as np
import matplotlib.pylab as pl
import ot.plot
from ot.datasets import make_1D_gauss as gauss
from ot.bregman import screenkhorn

##############################################################################
# Generate data
# -------------

# %% parameters

n = 100  # nb bins

# bin positions
x = np.arange(n, dtype=np.float64)

# Gaussian distributions
a = gauss(n, m=20, s=5)  # m= mean, s= std
b = gauss(n, m=60, s=10)

# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()

##############################################################################
# Plot distributions and loss matrix
# ----------------------------------

# %% plot the distributions

pl.figure(1, figsize=(6.4, 3))
pl.plot(x, a, "b", label="Source distribution")
pl.plot(x, b, "r", label="Target distribution")
pl.legend()

# plot distributions and loss matrix

pl.figure(2, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, M, "Cost matrix M")

##############################################################################
# Solve Screenkhorn
# -----------------------

# Screenkhorn
lambd = 2e-03  # entropy parameter
ns_budget = 30  # budget number of points to be kept in the source distribution
nt_budget = 30  # budget number of points to be kept in the target distribution

G_screen = screenkhorn(
    a, b, M, lambd, ns_budget, nt_budget, uniform=False, restricted=True, verbose=True
)
pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, G_screen, "OT matrix Screenkhorn")
pl.show()