1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
# coding: utf-8
"""
=============================================
Introduction to Optimal Transport with Python
=============================================
This example gives an introduction on how to use Optimal Transport in Python.
"""
# Author: Remi Flamary, Nicolas Courty, Aurelie Boisbunon
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 1
##############################################################################
# POT Python Optimal Transport Toolbox
# ------------------------------------
#
# POT installation
# ```````````````````
#
# * Install with pip::
#
# pip install pot
# * Install with conda::
#
# conda install -c conda-forge pot
#
# Import the toolbox
# ```````````````````
#
import numpy as np # always need it
import pylab as pl # do the plots
import ot # ot
import time
##############################################################################
# Getting help
# `````````````
#
# Online documentation : `<https://pythonot.github.io/all.html>`_
#
# Or inline help:
#
help(ot.dist)
##############################################################################
# First OT Problem
# ----------------
#
# We will solve the Bakery/Cafés problem of transporting croissants from a
# number of Bakeries to Cafés in a City (in this case Manhattan). We did a
# quick google map search in Manhattan for bakeries and Cafés:
#
# .. image:: ../_static/images/bak.png
# :align: center
# :alt: bakery-cafe-manhattan
# :width: 600px
# :height: 280px
#
# We extracted from this search their positions and generated fictional
# production and sale number (that both sum to the same value).
#
# We have access to the position of Bakeries ``bakery_pos`` and their
# respective production ``bakery_prod`` which describe the source
# distribution. The Cafés where the croissants are sold are defined also by
# their position ``cafe_pos`` and ``cafe_prod``, and describe the target
# distribution. For fun we also provide a
# map ``Imap`` that will illustrate the position of these shops in the city.
#
#
# Now we load the data
#
#
data = np.load("../data/manhattan.npz")
bakery_pos = data["bakery_pos"]
bakery_prod = data["bakery_prod"]
cafe_pos = data["cafe_pos"]
cafe_prod = data["cafe_prod"]
Imap = data["Imap"]
print("Bakery production: {}".format(bakery_prod))
print("Cafe sale: {}".format(cafe_prod))
print("Total croissants : {}".format(cafe_prod.sum()))
##############################################################################
# Plotting bakeries in the city
# -----------------------------
#
# Next we plot the position of the bakeries and cafés on the map. The size of
# the circle is proportional to their production.
#
pl.figure(1, (7, 6))
pl.clf()
pl.imshow(Imap, interpolation="bilinear") # plot the map
pl.scatter(
bakery_pos[:, 0], bakery_pos[:, 1], s=bakery_prod, c="r", ec="k", label="Bakeries"
)
pl.scatter(cafe_pos[:, 0], cafe_pos[:, 1], s=cafe_prod, c="b", ec="k", label="Cafés")
pl.legend()
pl.title("Manhattan Bakeries and Cafés")
##############################################################################
# Cost matrix
# -----------
#
#
# We can now compute the cost matrix between the bakeries and the cafés, which
# will be the transport cost matrix. This can be done using the
# `ot.dist <https://pythonot.github.io/all.html#ot.dist>`_ function that
# defaults to squared Euclidean distance but can return other things such as
# cityblock (or Manhattan distance).
#
C = ot.dist(bakery_pos, cafe_pos)
labels = [str(i) for i in range(len(bakery_prod))]
f = pl.figure(2, (14, 7))
pl.clf()
pl.subplot(121)
pl.imshow(Imap, interpolation="bilinear") # plot the map
for i in range(len(cafe_pos)):
pl.text(
cafe_pos[i, 0],
cafe_pos[i, 1],
labels[i],
color="b",
fontsize=14,
fontweight="bold",
ha="center",
va="center",
)
for i in range(len(bakery_pos)):
pl.text(
bakery_pos[i, 0],
bakery_pos[i, 1],
labels[i],
color="r",
fontsize=14,
fontweight="bold",
ha="center",
va="center",
)
pl.title("Manhattan Bakeries and Cafés")
ax = pl.subplot(122)
im = pl.imshow(C, cmap="coolwarm")
pl.title("Cost matrix")
cbar = pl.colorbar(im, ax=ax, shrink=0.5, use_gridspec=True)
cbar.ax.set_ylabel("cost", rotation=-90, va="bottom")
pl.xlabel("Cafés")
pl.ylabel("Bakeries")
pl.tight_layout()
##############################################################################
# The red cells in the matrix image show the bakeries and cafés that are
# further away, and thus more costly to transport from one to the other, while
# the blue ones show those that are very close to each other, with respect to
# the squared Euclidean distance.
##############################################################################
# Solving the OT problem with `ot.emd <https://pythonot.github.io/all.html#ot.emd>`_
# -----------------------------------------------------------------------------------
start = time.time()
ot_emd = ot.emd(bakery_prod, cafe_prod, C)
time_emd = time.time() - start
##############################################################################
# The function returns the transport matrix, which we can then visualize (next section).
##############################################################################
# Transportation plan visualization
# `````````````````````````````````
#
# A good visualization of the OT matrix in the 2D plane is to denote the
# transportation of mass between a Bakery and a Café by a line. This can easily
# be done with a double ``for`` loop.
#
# In order to make it more interpretable one can also use the ``alpha``
# parameter of plot and set it to ``alpha=G[i,j]/G.max()``.
# Plot the matrix and the map
f = pl.figure(3, (14, 7))
pl.clf()
pl.subplot(121)
pl.imshow(Imap, interpolation="bilinear") # plot the map
for i in range(len(bakery_pos)):
for j in range(len(cafe_pos)):
pl.plot(
[bakery_pos[i, 0], cafe_pos[j, 0]],
[bakery_pos[i, 1], cafe_pos[j, 1]],
"-k",
lw=3.0 * ot_emd[i, j] / ot_emd.max(),
)
for i in range(len(cafe_pos)):
pl.text(
cafe_pos[i, 0],
cafe_pos[i, 1],
labels[i],
color="b",
fontsize=14,
fontweight="bold",
ha="center",
va="center",
)
for i in range(len(bakery_pos)):
pl.text(
bakery_pos[i, 0],
bakery_pos[i, 1],
labels[i],
color="r",
fontsize=14,
fontweight="bold",
ha="center",
va="center",
)
pl.title("Manhattan Bakeries and Cafés")
ax = pl.subplot(122)
im = pl.imshow(ot_emd)
for i in range(len(bakery_prod)):
for j in range(len(cafe_prod)):
text = ax.text(
j, i, "{0:g}".format(ot_emd[i, j]), ha="center", va="center", color="w"
)
pl.title("Transport matrix")
pl.xlabel("Cafés")
pl.ylabel("Bakeries")
pl.tight_layout()
##############################################################################
# The transport matrix gives the number of croissants that can be transported
# from each bakery to each café. We can see that the bakeries only need to
# transport croissants to one or two cafés, the transport matrix being very
# sparse.
##############################################################################
# OT loss and dual variables
# --------------------------
#
# The resulting wasserstein loss loss is of the form:
#
# .. math::
# W=\sum_{i,j}\gamma_{i,j}C_{i,j}
#
# where :math:`\gamma` is the optimal transport matrix.
#
W = np.sum(ot_emd * C)
print("Wasserstein loss (EMD) = {0:.2f}".format(W))
##############################################################################
# Regularized OT with Sinkhorn
# ----------------------------
#
# The Sinkhorn algorithm is very simple to code. You can implement it directly
# using the following pseudo-code
#
# .. image:: ../_static/images/sinkhorn.png
# :align: center
# :alt: Sinkhorn algorithm
# :width: 440px
# :height: 240px
#
# In this algorithm, :math:`\oslash` corresponds to the element-wise division.
#
# An alternative is to use the POT toolbox with
# `ot.sinkhorn <https://pythonot.github.io/all.html#ot.sinkhorn>`_
#
# Be careful of numerical problems. A good pre-processing for Sinkhorn is to
# divide the cost matrix ``C`` by its maximum value.
##############################################################################
# Algorithm
# `````````
# Compute Sinkhorn transport matrix from algorithm
reg = 0.1
K = np.exp(-C / C.max() / reg)
nit = 100
u = np.ones((len(bakery_prod),))
for i in range(1, nit):
v = cafe_prod / np.dot(K.T, u)
u = bakery_prod / (np.dot(K, v))
ot_sink_algo = np.atleast_2d(u).T * (
K * v.T
) # Equivalent to np.dot(np.diag(u), np.dot(K, np.diag(v)))
# Compute Sinkhorn transport matrix with POT
ot_sinkhorn = ot.sinkhorn(bakery_prod, cafe_prod, reg=reg, M=C / C.max())
# Difference between the 2
print(
"Difference between algo and ot.sinkhorn = {0:.2g}".format(
np.sum(np.power(ot_sink_algo - ot_sinkhorn, 2))
)
)
##############################################################################
# Plot the matrix and the map
# ```````````````````````````
print("Min. of Sinkhorn's transport matrix = {0:.2g}".format(np.min(ot_sinkhorn)))
f = pl.figure(4, (13, 6))
pl.clf()
pl.subplot(121)
pl.imshow(Imap, interpolation="bilinear") # plot the map
for i in range(len(bakery_pos)):
for j in range(len(cafe_pos)):
pl.plot(
[bakery_pos[i, 0], cafe_pos[j, 0]],
[bakery_pos[i, 1], cafe_pos[j, 1]],
"-k",
lw=3.0 * ot_sinkhorn[i, j] / ot_sinkhorn.max(),
)
for i in range(len(cafe_pos)):
pl.text(
cafe_pos[i, 0],
cafe_pos[i, 1],
labels[i],
color="b",
fontsize=14,
fontweight="bold",
ha="center",
va="center",
)
for i in range(len(bakery_pos)):
pl.text(
bakery_pos[i, 0],
bakery_pos[i, 1],
labels[i],
color="r",
fontsize=14,
fontweight="bold",
ha="center",
va="center",
)
pl.title("Manhattan Bakeries and Cafés")
ax = pl.subplot(122)
im = pl.imshow(ot_sinkhorn)
for i in range(len(bakery_prod)):
for j in range(len(cafe_prod)):
text = ax.text(
j, i, np.round(ot_sinkhorn[i, j], 1), ha="center", va="center", color="w"
)
pl.title("Transport matrix")
pl.xlabel("Cafés")
pl.ylabel("Bakeries")
pl.tight_layout()
##############################################################################
# We notice right away that the matrix is not sparse at all with Sinkhorn,
# each bakery delivering croissants to all 5 cafés with that solution. Also,
# this solution gives a transport with fractions, which does not make sense
# in the case of croissants. This was not the case with EMD.
##############################################################################
# Varying the regularization parameter in Sinkhorn
# ````````````````````````````````````````````````
#
reg_parameter = np.logspace(-3, 0, 20)
W_sinkhorn_reg = np.zeros((len(reg_parameter),))
time_sinkhorn_reg = np.zeros((len(reg_parameter),))
f = pl.figure(5, (14, 5))
pl.clf()
max_ot = 100 # plot matrices with the same colorbar
for k in range(len(reg_parameter)):
start = time.time()
ot_sinkhorn = ot.sinkhorn(
bakery_prod, cafe_prod, reg=reg_parameter[k], M=C / C.max()
)
time_sinkhorn_reg[k] = time.time() - start
if k % 4 == 0 and k > 0: # we only plot a few
ax = pl.subplot(1, 5, k // 4)
im = pl.imshow(ot_sinkhorn, vmin=0, vmax=max_ot)
pl.title("reg={0:.2g}".format(reg_parameter[k]))
pl.xlabel("Cafés")
pl.ylabel("Bakeries")
# Compute the Wasserstein loss for Sinkhorn, and compare with EMD
W_sinkhorn_reg[k] = np.sum(ot_sinkhorn * C)
pl.tight_layout()
##############################################################################
# This series of graph shows that the solution of Sinkhorn starts with something
# very similar to EMD (although not sparse) for very small values of the
# regularization parameter, and tends to a more uniform solution as the
# regularization parameter increases.
#
##############################################################################
# Wasserstein loss and computational time
# ```````````````````````````````````````
#
# Plot the matrix and the map
f = pl.figure(6, (4, 4))
pl.clf()
pl.title("Comparison between Sinkhorn and EMD")
pl.plot(reg_parameter, W_sinkhorn_reg, "o", label="Sinkhorn")
XLim = pl.xlim()
pl.plot(XLim, [W, W], "--k", label="EMD")
pl.legend()
pl.xlabel("reg")
pl.ylabel("Wasserstein loss")
##############################################################################
# In this last graph, we show the impact of the regularization parameter on
# the Wasserstein loss. We can see that higher
# values of ``reg`` leads to a much higher Wasserstein loss.
#
# The Wasserstein loss of EMD is displayed for
# comparison. The Wasserstein loss of Sinkhorn can be a little lower than that
# of EMD for low values of ``reg``, but it quickly gets much higher.
#
|