1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
# -*- coding: utf-8 -*-
"""
================================
Smooth and sparse OT example
================================
This example illustrates the computation of
Smooth and Sparse (KL an L2 reg.) OT and
sparsity-constrained OT, together with their visualizations.
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 5
import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot
from ot.datasets import make_1D_gauss as gauss
##############################################################################
# Generate data
# -------------
# %% parameters
n = 100 # nb bins
# bin positions
x = np.arange(n, dtype=np.float64)
# Gaussian distributions
a = gauss(n, m=20, s=5) # m= mean, s= std
b = gauss(n, m=60, s=10)
# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()
##############################################################################
# Plot distributions and loss matrix
# ----------------------------------
# %% plot the distributions
pl.figure(1, figsize=(6.4, 3))
pl.plot(x, a, "b", label="Source distribution")
pl.plot(x, b, "r", label="Target distribution")
pl.legend()
# %% plot distributions and loss matrix
pl.figure(2, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, M, "Cost matrix M")
##############################################################################
# Solve Smooth OT
# ---------------
# %% Smooth OT with KL regularization
lambd = 2e-3
Gsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type="kl")
pl.figure(3, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, Gsm, "OT matrix Smooth OT KL reg.")
pl.show()
# %% Smooth OT with squared l2 regularization
lambd = 1e-1
Gsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type="l2")
pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, Gsm, "OT matrix Smooth OT l2 reg.")
pl.show()
# %% Sparsity-constrained OT
lambd = 1e-1
max_nz = 2 # two non-zero entries are permitted per column of the OT plan
Gsc = ot.smooth.smooth_ot_dual(
a, b, M, lambd, reg_type="sparsity_constrained", max_nz=max_nz
)
pl.figure(5, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, Gsc, "Sparsity constrained OT matrix; k=2.")
pl.show()
|