1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
# -*- coding: utf-8 -*-
"""
==================================
Regularized OT with generic solver
==================================
Illustrates the use of the generic solver for regularized OT with
user-designed regularization term. It uses Conditional gradient as in [6] and
generalized Conditional Gradient as proposed in [5,7].
[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, Optimal Transport for
Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine
Intelligence , vol.PP, no.99, pp.1-1.
[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
Regularized discrete optimal transport. SIAM Journal on Imaging
Sciences, 7(3), 1853-1882.
[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized
conditional gradient: analysis of convergence and applications.
arXiv preprint arXiv:1510.06567.
"""
# sphinx_gallery_thumbnail_number = 5
import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot
##############################################################################
# Generate data
# -------------
# %% parameters
n = 100 # nb bins
# bin positions
x = np.arange(n, dtype=np.float64)
# Gaussian distributions
a = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std
b = ot.datasets.make_1D_gauss(n, m=60, s=10)
# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()
##############################################################################
# Solve EMD
# ---------
# %% EMD
G0 = ot.emd(a, b, M)
pl.figure(1, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, G0, "OT matrix G0")
##############################################################################
# Solve EMD with Frobenius norm regularization
# --------------------------------------------
# %% Example with Frobenius norm regularization
def f(G):
return 0.5 * np.sum(G**2)
def df(G):
return G
reg = 1e-1
Gl2 = ot.optim.cg(a, b, M, reg, f, df, verbose=True)
pl.figure(2)
ot.plot.plot1D_mat(a, b, Gl2, "OT matrix Frob. reg")
##############################################################################
# Solve EMD with entropic regularization
# --------------------------------------
# %% Example with entropic regularization
def f(G):
return np.sum(G * np.log(G))
def df(G):
return np.log(G) + 1.0
reg = 1e-3
Ge = ot.optim.cg(a, b, M, reg, f, df, verbose=True)
pl.figure(3, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, Ge, "OT matrix Entrop. reg")
##############################################################################
# Solve EMD with Frobenius norm + entropic regularization
# -------------------------------------------------------
# %% Example with Frobenius norm + entropic regularization with gcg
def f(G):
return 0.5 * np.sum(G**2)
def df(G):
return G
reg1 = 1e-3
reg2 = 1e-1
Gel2 = ot.optim.gcg(a, b, M, reg1, reg2, f, df, verbose=True)
pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, Gel2, "OT entropic + matrix Frob. reg")
pl.show()
# %%
# Comparison of the OT matrices
nvisu = 40
pl.figure(5, figsize=(10, 4))
pl.subplot(2, 2, 1)
pl.imshow(G0[:nvisu, :])
pl.axis("off")
pl.title("Exact OT")
pl.subplot(2, 2, 2)
pl.imshow(Gl2[:nvisu, :])
pl.axis("off")
pl.title("Frobenius reg.")
pl.subplot(2, 2, 3)
pl.imshow(Ge[:nvisu, :])
pl.axis("off")
pl.title("Entropic reg.")
pl.subplot(2, 2, 4)
pl.imshow(Gel2[:nvisu, :])
pl.axis("off")
pl.title("Entropic + Frobenius reg.")
|