1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
# -*- coding: utf-8 -*-
"""
======================================
Optimal Transport solvers comparison
======================================
This example illustrates the solutions returns for different variants of exact,
regularized and unbalanced OT solvers.
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 3
# %%
import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot
from ot.datasets import make_1D_gauss as gauss
##############################################################################
# Generate data
# -------------
# %% parameters
n = 50 # nb bins
# bin positions
x = np.arange(n, dtype=np.float64)
# Gaussian distributions
a = 0.6 * gauss(n, m=15, s=5) + 0.4 * gauss(n, m=35, s=5) # m= mean, s= std
b = gauss(n, m=25, s=5)
# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()
##############################################################################
# Plot distributions and loss matrix
# ----------------------------------
# %% plot the distributions
pl.figure(1, figsize=(6.4, 3))
pl.plot(x, a, "b", label="Source distribution")
pl.plot(x, b, "r", label="Target distribution")
pl.legend()
# %% plot distributions and loss matrix
pl.figure(2, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, M, "Cost matrix M")
##############################################################################
# Define Group lasso regularization and gradient
# ------------------------------------------------
# The groups are the first and second half of the columns of G
def reg_gl(G): # group lasso + small l2 reg
G1 = G[: n // 2, :] ** 2
G2 = G[n // 2 :, :] ** 2
gl1 = np.sum(np.sqrt(np.sum(G1, 0)))
gl2 = np.sum(np.sqrt(np.sum(G2, 0)))
return gl1 + gl2 + 0.1 * np.sum(G**2)
def grad_gl(G): # gradient of group lasso + small l2 reg
G1 = G[: n // 2, :]
G2 = G[n // 2 :, :]
gl1 = G1 / np.sqrt(np.sum(G1**2, 0, keepdims=True) + 1e-8)
gl2 = G2 / np.sqrt(np.sum(G2**2, 0, keepdims=True) + 1e-8)
return np.concatenate((gl1, gl2), axis=0) + 0.2 * G
reg_type_gl = (reg_gl, grad_gl)
# %%
# Set up parameters for solvers and solve
# ---------------------------------------
lst_regs = ["No Reg.", "Entropic", "L2", "Group Lasso + L2"]
lst_unbalanced = [
"Balanced",
"Unbalanced KL",
"Unbalanced L2",
"Unb. TV (Partial)",
] # ["Balanced", "Unb. KL", "Unb. L2", "Unb L1 (partial)"]
lst_solvers = [ # name, param for ot.solve function
# balanced OT
("Exact OT", dict()),
("Entropic Reg. OT", dict(reg=0.005)),
("L2 Reg OT", dict(reg=1, reg_type="l2")),
("Group Lasso Reg. OT", dict(reg=0.1, reg_type=reg_type_gl)),
# unbalanced OT KL
("Unbalanced KL No Reg.", dict(unbalanced=0.005)),
(
"Unbalanced KL with KL Reg.",
dict(reg=0.0005, unbalanced=0.005, unbalanced_type="kl", reg_type="kl"),
),
(
"Unbalanced KL with L2 Reg.",
dict(reg=0.5, reg_type="l2", unbalanced=0.005, unbalanced_type="kl"),
),
(
"Unbalanced KL with Group Lasso Reg.",
dict(reg=0.1, reg_type=reg_type_gl, unbalanced=0.05, unbalanced_type="kl"),
),
# unbalanced OT L2
("Unbalanced L2 No Reg.", dict(unbalanced=0.5, unbalanced_type="l2")),
(
"Unbalanced L2 with KL Reg.",
dict(reg=0.001, unbalanced=0.2, unbalanced_type="l2"),
),
(
"Unbalanced L2 with L2 Reg.",
dict(reg=0.1, reg_type="l2", unbalanced=0.2, unbalanced_type="l2"),
),
(
"Unbalanced L2 with Group Lasso Reg.",
dict(reg=0.05, reg_type=reg_type_gl, unbalanced=0.7, unbalanced_type="l2"),
),
# unbalanced OT TV
("Unbalanced TV No Reg.", dict(unbalanced=0.1, unbalanced_type="tv")),
(
"Unbalanced TV with KL Reg.",
dict(reg=0.001, unbalanced=0.01, unbalanced_type="tv"),
),
(
"Unbalanced TV with L2 Reg.",
dict(reg=0.1, reg_type="l2", unbalanced=0.01, unbalanced_type="tv"),
),
(
"Unbalanced TV with Group Lasso Reg.",
dict(reg=0.02, reg_type=reg_type_gl, unbalanced=0.01, unbalanced_type="tv"),
),
]
lst_plans = []
for name, param in lst_solvers:
G = ot.solve(M, a, b, **param).plan
lst_plans.append(G)
##############################################################################
# Plot plans
# ----------
pl.figure(3, figsize=(9, 9))
for i, bname in enumerate(lst_unbalanced):
for j, rname in enumerate(lst_regs):
pl.subplot(len(lst_unbalanced), len(lst_regs), i * len(lst_regs) + j + 1)
plan = lst_plans[i * len(lst_regs) + j]
m2 = plan.sum(0)
m1 = plan.sum(1)
m1, m2 = m1 / a.max(), m2 / b.max()
pl.imshow(plan, cmap="Greys")
pl.plot(x, m2 * 10, "r")
pl.plot(m1 * 10, x, "b")
pl.plot(x, b / b.max() * 10, "r", alpha=0.3)
pl.plot(a / a.max() * 10, x, "b", alpha=0.3)
# pl.axis('off')
pl.tick_params(
left=False, right=False, labelleft=False, labelbottom=False, bottom=False
)
if i == 0:
pl.title(rname)
if j == 0:
pl.ylabel(bname, fontsize=14)
|