File: plot_UOT_1D.py

package info (click to toggle)
python-pot 0.9.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,884 kB
  • sloc: python: 56,498; cpp: 2,310; makefile: 265; sh: 19
file content (90 lines) | stat: -rw-r--r-- 2,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# -*- coding: utf-8 -*-
"""
===============================
1D Unbalanced optimal transport
===============================

This example illustrates the computation of Unbalanced Optimal transport
using a Kullback-Leibler relaxation.
"""

# Author: Hicham Janati <hicham.janati@inria.fr>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 4

import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot
from ot.datasets import make_1D_gauss as gauss

##############################################################################
# Generate data
# -------------


# %% parameters

n = 100  # nb bins

# bin positions
x = np.arange(n, dtype=np.float64)

# Gaussian distributions
a = gauss(n, m=20, s=5)  # m= mean, s= std
b = gauss(n, m=60, s=10)

# make distributions unbalanced
b *= 5.0

# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()


##############################################################################
# Plot distributions and loss matrix
# ----------------------------------

# %% plot the distributions

pl.figure(1, figsize=(6.4, 3))
pl.plot(x, a, "b", label="Source distribution")
pl.plot(x, b, "r", label="Target distribution")
pl.legend()

# plot distributions and loss matrix

pl.figure(2, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, M, "Cost matrix M")


##############################################################################
# Solve Unbalanced Sinkhorn
# -------------------------

# Sinkhorn

epsilon = 0.1  # entropy parameter
alpha = 1.0  # Unbalanced KL relaxation parameter
Gs = ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, alpha, verbose=True)

pl.figure(3, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, Gs, "UOT matrix Sinkhorn")

pl.show()


# %%
# plot the transported mass
# -------------------------

pl.figure(4, figsize=(6.4, 3))
pl.plot(x, a, "b", label="Source distribution")
pl.plot(x, b, "r", label="Target distribution")
pl.fill(x, Gs.sum(1), "b", alpha=0.5, label="Transported source")
pl.fill(x, Gs.sum(0), "r", alpha=0.5, label="Transported target")
pl.legend(loc="upper right")
pl.title("Distributions and transported mass for UOT")