1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
|
# -*- coding: utf-8 -*-
"""
Unbalanced Co-Optimal Transport and Fused Unbalanced Gromov-Wasserstein solvers
"""
# Author: Quang Huy Tran <quang-huy.tran@univ-ubs.fr>
# Alexis Thual <alexis.thual@cea.fr>
#
# License: MIT License
import warnings
from functools import partial
import ot
from ot.backend import get_backend
from ot.utils import list_to_array, get_parameter_pair
from ._utils import (
fused_unbalanced_across_spaces_cost,
uot_cost_matrix,
uot_parameters_and_measures,
)
def fused_unbalanced_across_spaces_divergence(
X,
Y,
wx_samp=None,
wx_feat=None,
wy_samp=None,
wy_feat=None,
reg_marginals=10,
epsilon=0,
reg_type="joint",
divergence="kl",
unbalanced_solver="sinkhorn",
alpha=0,
M_samp=None,
M_feat=None,
rescale_plan=True,
init_pi=None,
init_duals=None,
max_iter=100,
tol=1e-7,
max_iter_ot=500,
tol_ot=1e-7,
log=False,
verbose=False,
**kwargs_solver,
):
r"""Compute the fused unbalanced cross-spaces divergence between two matrices equipped
with the distributions on rows and columns. We consider two cases of matrix:
- (Squared) similarity matrix in Gromov-Wasserstein setting,
whose rows and columns represent the samples.
- Arbitrary-size matrix in Co-Optimal Transport setting,
whose rows represent samples, and columns represent corresponding features/dimensions.
More precisely, this function returns the sample and feature transport plans between
:math:`(\mathbf{X}, \mathbf{w}_{xs}, \mathbf{w}_{xf})` and
:math:`(\mathbf{Y}, \mathbf{w}_{ys}, \mathbf{w}_{yf})`,
by solving the following problem using Block Coordinate Descent algorithm:
.. math::
\mathop{\arg \min}_{\mathbf{P}, \mathbf{Q}}
&\quad \sum_{i,j,k,l}
(\mathbf{X}_{i,k} - \mathbf{Y}_{j,l})^2 \mathbf{P}_{i,j} \mathbf{Q}_{k,l} \\
&+ \rho_s \mathbf{Div}(\mathbf{P}_{\# 1} \mathbf{Q}_{\# 1}^T | \mathbf{w}_{xs} \mathbf{w}_{ys}^T)
+ \rho_f \mathbf{Div}(\mathbf{P}_{\# 2} \mathbf{Q}_{\# 2}^T | \mathbf{w}_{xf} \mathbf{w}_{yf}^T) \\
&+ \alpha_s \sum_{i,j} \mathbf{P}_{i,j} \mathbf{M^{(s)}}_{i, j}
+ \alpha_f \sum_{k, l} \mathbf{Q}_{k,l} \mathbf{M^{(f)}}_{k, l}
+ \mathbf{Reg}(\mathbf{P}, \mathbf{Q})
Where:
- :math:`\mathbf{X}`: Source input (arbitrary-size) matrix
- :math:`\mathbf{Y}`: Target input (arbitrary-size) matrix
- :math:`\mathbf{M^{(s)}}`: Additional sample matrix
- :math:`\mathbf{M^{(f)}}`: Additional feature matrix
- :math:`\mathbf{w}_{xs}`: Distribution of the samples in the source space
- :math:`\mathbf{w}_{xf}`: Distribution of the features in the source space
- :math:`\mathbf{w}_{ys}`: Distribution of the samples in the target space
- :math:`\mathbf{w}_{yf}`: Distribution of the features in the target space
- :math:`\mathbf{Div}`: Either Kullback-Leibler divergence or half-squared L2 norm.
- :math:`\mathbf{Reg}`: Regularizer for sample and feature couplings.
We consider two types of regularizer:
+ Independent regularization used in unbalanced Co-Optimal Transport
.. math::
\mathbf{Reg}(\mathbf{P}, \mathbf{Q}) =
\varepsilon_s \mathbf{Div}(\mathbf{P} | \mathbf{w}_{xs} \mathbf{w}_{ys}^T)
+ \varepsilon_f \mathbf{Div}(\mathbf{Q} | \mathbf{w}_{xf} \mathbf{w}_{yf}^T)
+ Joint regularization used in fused unbalanced Gromov-Wasserstein
.. math::
\mathbf{Reg}(\mathbf{P}, \mathbf{Q}) =
\varepsilon \mathbf{Div}(\mathbf{P} \otimes \mathbf{Q} | (\mathbf{w}_{xs} \mathbf{w}_{ys}^T) \otimes (\mathbf{w}_{xf} \mathbf{w}_{yf}^T) )
.. note:: This function allows epsilon to be zero. In that case, `unbalanced_method` must be either "mm" or "lbfgsb".
Parameters
----------
X : (n_sample_x, n_feature_x) array-like, float
Source input matrix.
Y : (n_sample_y, n_feature_y) array-like, float
Target input matrix.
wx_samp : (n_sample_x, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix X.
Uniform distribution by default.
wx_feat : (n_feature_x, ) array-like, float, optional (default = None)
Histogram assigned on columns (features) of matrix X.
Uniform distribution by default.
wy_samp : (n_sample_y, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix Y.
Uniform distribution by default.
wy_feat : (n_feature_y, ) array-like, float, optional (default = None)
Histogram assigned on columns (features) of matrix Y.
Uniform distribution by default.
reg_marginals: float or indexable object of length 1 or 2
Marginal relaxation terms for sample and feature couplings.
If `reg_marginals` is a scalar or an indexable object of length 1,
then the same value is applied to both marginal relaxations.
epsilon : scalar or indexable object of length 2, float or int, optional (default = 0)
Regularization parameters for entropic approximation of sample and feature couplings.
Allow the case where `epsilon` contains 0. In that case, the MM solver is used by default
instead of Sinkhorn solver. If `epsilon` is scalar, then the same value is applied to
both regularization of sample and feature couplings.
reg_type: string, optional
- If `reg_type` = "joint": then use joint regularization for couplings.
- If `reg_type` = "independent": then use independent regularization for couplings.
divergence : string, optional (default = "kl")
- If `divergence` = "kl", then Div is the Kullback-Leibler divergence.
- If `divergence` = "l2", then Div is the half squared Euclidean norm.
unbalanced_solver : string, optional (default = "sinkhorn")
Solver for the unbalanced OT subroutine.
- If `divergence` = "kl", then `unbalanced_solver` can be: "sinkhorn", "sinkhorn_log", "mm", "lbfgsb"
- If `divergence` = "l2", then `unbalanced_solver` can be "mm", "lbfgsb"
alpha : scalar or indexable object of length 2, float or int, optional (default = 0)
Coeffficient parameter of linear terms with respect to the sample and feature couplings.
If alpha is scalar, then the same alpha is applied to both linear terms.
M_samp : (n_sample_x, n_sample_y), float, optional (default = None)
Sample matrix associated to the Wasserstein linear term on sample coupling.
M_feat : (n_feature_x, n_feature_y), float, optional (default = None)
Feature matrix associated to the Wasserstein linear term on feature coupling.
rescale_plan : boolean, optional (default = True)
If True, then rescale the sample and feature transport plans within each BCD iteration,
so that they always have equal mass.
init_pi : tuple of two matrices of size (n_sample_x, n_sample_y) and
(n_feature_x, n_feature_y), optional (default = None).
Initialization of sample and feature couplings.
Uniform distributions by default.
init_duals : tuple of two tuples ((n_sample_x, ), (n_sample_y, )) and ((n_feature_x, ), (n_feature_y, )), optional (default = None).
Initialization of sample and feature dual vectors
if using Sinkhorn algorithm. Zero vectors by default.
max_iter : int, optional (default = 100)
Number of Block Coordinate Descent (BCD) iterations.
tol : float, optional (default = 1e-7)
Tolerance of BCD scheme. If the L1-norm between the current and previous
sample couplings is under this threshold, then stop BCD scheme.
max_iter_ot : int, optional (default = 100)
Number of iterations to solve each of the
two unbalanced optimal transport problems in each BCD iteration.
tol_ot : float, optional (default = 1e-7)
Tolerance of unbalanced solver for each of the
two unbalanced optimal transport problems in each BCD iteration.
log : bool, optional (default = False)
If True then the cost and four dual vectors, including
two from sample and two from feature couplings, are recorded.
verbose : bool, optional (default = False)
If True then print the COOT cost at every multiplier of `eval_bcd`-th iteration.
Returns
-------
pi_samp : (n_sample_x, n_sample_y) array-like, float
Sample coupling matrix.
pi_feat : (n_feature_x, n_feature_y) array-like, float
Feature coupling matrix.
log : dictionary, optional
Returned if `log` is True. The keys are:
error : array-like, float
list of L1 norms between the current and previous sample coupling.
duals_sample : (n_sample_x, n_sample_y) tuple, float
Pair of dual vectors when solving OT problem w.r.t the sample coupling.
duals_feature : (n_feature_x, n_feature_y) tuple, float
Pair of dual vectors when solving OT problem w.r.t the feature coupling.
linear : float
Linear part of the cost.
ucoot : float
Total cost.
backend
The proper backend for all input arrays
"""
# MAIN FUNCTION
if reg_type not in ["joint", "independent"]:
raise (NotImplementedError('Unknown reg_type="{}"'.format(reg_type)))
if divergence not in ["kl", "l2"]:
raise (NotImplementedError('Unknown divergence="{}"'.format(divergence)))
if unbalanced_solver not in ["sinkhorn", "sinkhorn_log", "mm", "lbfgsb"]:
raise (NotImplementedError('Unknown method="{}"'.format(unbalanced_solver)))
# hyperparameters
alpha_samp, alpha_feat = get_parameter_pair(alpha)
rho_x, rho_y = get_parameter_pair(reg_marginals)
eps_samp, eps_feat = get_parameter_pair(epsilon)
if reg_type == "joint": # same regularization
eps_feat = eps_samp
if unbalanced_solver in ["sinkhorn", "sinkhorn_log"] and divergence == "l2":
warnings.warn(
"Sinkhorn algorithm does not support L2 norm. \
Divergence is set to 'kl'."
)
divergence = "kl"
if unbalanced_solver in ["sinkhorn", "sinkhorn_log"] and (
eps_samp == 0 or eps_feat == 0
):
warnings.warn(
"Sinkhorn algorithm does not support unregularized problem. \
Solver is set to 'mm'."
)
unbalanced_solver = "mm"
if init_pi is None:
pi_samp, pi_feat = None, None
else:
pi_samp, pi_feat = init_pi
if init_duals is None:
init_duals = (None, None)
duals_samp, duals_feat = init_duals
arr = [X, Y]
for tuple in [duals_samp, duals_feat]:
if tuple is not None:
d1, d2 = duals_feat
if d1 is not None:
arr.append(list_to_array(d1))
if d2 is not None:
arr.append(list_to_array(d2))
nx = get_backend(
*arr, wx_samp, wx_feat, wy_samp, wy_feat, M_samp, M_feat, pi_samp, pi_feat
)
# constant input variables
if M_samp is None:
if alpha_samp > 0:
warnings.warn(
"M_samp is None but alpha_samp = {} > 0. \
The algo will treat as if alpha_samp = 0.".format(alpha_samp)
)
else:
M_samp = alpha_samp * M_samp
if M_feat is None:
if alpha_feat > 0:
warnings.warn(
"M_feat is None but alpha_feat = {} > 0. \
The algo will treat as if alpha_feat = 0.".format(alpha_feat)
)
else:
M_feat = alpha_feat * M_feat
nx_samp, nx_feat = X.shape
ny_samp, ny_feat = Y.shape
# measures on rows and columns
if wx_samp is None:
wx_samp = nx.ones(nx_samp, type_as=X) / nx_samp
if wx_feat is None:
wx_feat = nx.ones(nx_feat, type_as=X) / nx_feat
if wy_samp is None:
wy_samp = nx.ones(ny_samp, type_as=Y) / ny_samp
if wy_feat is None:
wy_feat = nx.ones(ny_feat, type_as=Y) / ny_feat
wxy_samp = wx_samp[:, None] * wy_samp[None, :]
wxy_feat = wx_feat[:, None] * wy_feat[None, :]
# initialize coupling and dual vectors
pi_samp = wxy_samp if pi_samp is None else pi_samp
pi_feat = wxy_feat if pi_feat is None else pi_feat
if unbalanced_solver in ["sinkhorn", "sinkhorn_log"]:
if duals_samp is None:
duals_samp = (nx.zeros(nx_samp, type_as=X), nx.zeros(ny_samp, type_as=Y))
if duals_feat is None:
duals_feat = (nx.zeros(nx_feat, type_as=X), nx.zeros(ny_feat, type_as=Y))
# shortcut functions
X_sqr, Y_sqr = X**2, Y**2
local_cost_samp = partial(
uot_cost_matrix,
data=(X_sqr, Y_sqr, X, Y, M_samp),
tuple_p=(wx_feat, wy_feat),
hyperparams=(rho_x, rho_y, eps_feat),
divergence=divergence,
reg_type=reg_type,
nx=nx,
)
local_cost_feat = partial(
uot_cost_matrix,
data=(X_sqr.T, Y_sqr.T, X.T, Y.T, M_feat),
tuple_p=(wx_samp, wy_samp),
hyperparams=(rho_x, rho_y, eps_samp),
divergence=divergence,
reg_type=reg_type,
nx=nx,
)
parameters_uot_l2_samp = partial(
uot_parameters_and_measures,
tuple_weights=(wx_samp, wy_samp, wxy_samp),
hyperparams=(rho_x, rho_y, eps_samp),
reg_type=reg_type,
divergence=divergence,
nx=nx,
)
parameters_uot_l2_feat = partial(
uot_parameters_and_measures,
tuple_weights=(wx_feat, wy_feat, wxy_feat),
hyperparams=(rho_x, rho_y, eps_feat),
reg_type=reg_type,
divergence=divergence,
nx=nx,
)
solver = partial(
ot.solve,
reg_type=divergence,
unbalanced_type=divergence,
method=unbalanced_solver,
max_iter=max_iter_ot,
tol=tol_ot,
verbose=False,
)
# initialize log
if log:
dict_log = {"backend": nx, "error": []}
for idx in range(max_iter):
pi_samp_prev = nx.copy(pi_samp)
# Update feature coupling
mass = nx.sum(pi_samp)
uot_cost = local_cost_feat(pi=pi_samp)
if divergence == "kl":
new_rho = (rho_x * mass, rho_y * mass)
new_eps = mass * eps_feat if reg_type == "joint" else eps_feat
new_wx, new_wy, new_wxy = wx_feat, wy_feat, wxy_feat
else: # divergence == "l2"
new_w, new_rho, new_eps = parameters_uot_l2_feat(pi_feat)
new_wx, new_wy, new_wxy = new_w
res = solver(
M=uot_cost,
a=new_wx,
b=new_wy,
reg=new_eps,
c=new_wxy,
unbalanced=new_rho,
plan_init=pi_feat,
potentials_init=duals_feat,
)
pi_feat, duals_feat = res.plan, res.potentials
if rescale_plan:
pi_feat = nx.sqrt(mass / nx.sum(pi_feat)) * pi_feat
# Update sample coupling
mass = nx.sum(pi_feat)
uot_cost = local_cost_samp(pi=pi_feat)
if divergence == "kl":
new_rho = (rho_x * mass, rho_y * mass)
new_eps = mass * eps_feat if reg_type == "joint" else eps_feat
new_wx, new_wy, new_wxy = wx_samp, wy_samp, wxy_samp
else: # divergence == "l2"
new_w, new_rho, new_eps = parameters_uot_l2_samp(pi_samp)
new_wx, new_wy, new_wxy = new_w
res = solver(
M=uot_cost,
a=new_wx,
b=new_wy,
reg=new_eps,
c=new_wxy,
unbalanced=new_rho,
plan_init=pi_samp,
potentials_init=duals_samp,
)
pi_samp, duals_samp = res.plan, res.potentials
if rescale_plan:
pi_samp = nx.sqrt(mass / nx.sum(pi_samp)) * pi_samp # shape nx x ny
# get L1 error
err = nx.sum(nx.abs(pi_samp - pi_samp_prev))
if log:
dict_log["error"].append(err)
if verbose:
print("{:5d}|{:8e}|".format(idx + 1, err))
if err < tol:
break
# sanity check
if nx.sum(nx.isnan(pi_samp)) > 0 or nx.sum(nx.isnan(pi_feat)) > 0:
raise (
ValueError(
"There is NaN in coupling. \
Adjust the relaxation or regularization parameters."
)
)
if log:
linear_cost, ucoot_cost = fused_unbalanced_across_spaces_cost(
M_linear=(M_samp, M_feat),
data=(X_sqr, Y_sqr, X, Y),
tuple_pxy_samp=(wx_samp, wy_samp, wxy_samp),
tuple_pxy_feat=(wx_feat, wy_feat, wxy_feat),
pi_samp=pi_samp,
pi_feat=pi_feat,
hyperparams=(rho_x, rho_y, eps_samp, eps_feat),
divergence=divergence,
reg_type=reg_type,
nx=nx,
)
dict_log["duals_sample"] = duals_samp
dict_log["duals_feature"] = duals_feat
dict_log["linear_cost"] = linear_cost
dict_log["ucoot_cost"] = ucoot_cost
return pi_samp, pi_feat, dict_log
else:
return pi_samp, pi_feat
def unbalanced_co_optimal_transport(
X,
Y,
wx_samp=None,
wx_feat=None,
wy_samp=None,
wy_feat=None,
reg_marginals=10,
epsilon=0,
divergence="kl",
unbalanced_solver="mm",
alpha=0,
M_samp=None,
M_feat=None,
rescale_plan=True,
init_pi=None,
init_duals=None,
max_iter=100,
tol=1e-7,
max_iter_ot=500,
tol_ot=1e-7,
log=False,
verbose=False,
**kwargs_solve,
):
r"""Compute the unbalanced Co-Optimal Transport between two Euclidean point clouds
(represented as matrices whose rows are samples and columns are the features/dimensions).
More precisely, this function returns the sample and feature transport plans between
:math:`(\mathbf{X}, \mathbf{w}_{xs}, \mathbf{w}_{xf})` and
:math:`(\mathbf{Y}, \mathbf{w}_{ys}, \mathbf{w}_{yf})`,
by solving the following problem using Block Coordinate Descent algorithm:
.. math::
\mathop{\arg \min}_{\mathbf{P}, \mathbf{Q}} &\quad \sum_{i,j,k,l}
(\mathbf{X}_{i,k} - \mathbf{Y}_{j,l})^2 \mathbf{P}_{i,j} \mathbf{Q}_{k,l} \\
&+ \rho_s \mathbf{Div}(\mathbf{P}_{\# 1} \mathbf{Q}_{\# 1}^T | \mathbf{w}_{xs} \mathbf{w}_{ys}^T)
+ \rho_f \mathbf{Div}(\mathbf{P}_{\# 2} \mathbf{Q}_{\# 2}^T | \mathbf{w}_{xf} \mathbf{w}_{yf}^T) \\
&+ \alpha_s \sum_{i,j} \mathbf{P}_{i,j} \mathbf{M^{(s)}}_{i, j}
+ \alpha_f \sum_{k, l} \mathbf{Q}_{k,l} \mathbf{M^{(f)}}_{k, l} \\
&+ \varepsilon_s \mathbf{Div}(\mathbf{P} | \mathbf{w}_{xs} \mathbf{w}_{ys}^T)
+ \varepsilon_f \mathbf{Div}(\mathbf{Q} | \mathbf{w}_{xf} \mathbf{w}_{yf}^T)
Where:
- :math:`\mathbf{X}`: Source input (arbitrary-size) matrix
- :math:`\mathbf{Y}`: Target input (arbitrary-size) matrix
- :math:`\mathbf{M^{(s)}}`: Additional sample matrix
- :math:`\mathbf{M^{(f)}}`: Additional feature matrix
- :math:`\mathbf{w}_{xs}`: Distribution of the samples in the source space
- :math:`\mathbf{w}_{xf}`: Distribution of the features in the source space
- :math:`\mathbf{w}_{ys}`: Distribution of the samples in the target space
- :math:`\mathbf{w}_{yf}`: Distribution of the features in the target space
- :math:`\mathbf{Div}`: Either Kullback-Leibler divergence or half-squared L2 norm.
.. note:: This function allows `epsilon` to be zero. In that case, `unbalanced_method` must be either "mm" or "lbfgsb".
Parameters
----------
X : (n_sample_x, n_feature_x) array-like, float
Source input matrix.
Y : (n_sample_y, n_feature_y) array-like, float
Target input matrix.
wx_samp : (n_sample_x, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix X.
Uniform distribution by default.
wx_feat : (n_feature_x, ) array-like, float, optional (default = None)
Histogram assigned on columns (features) of matrix X.
Uniform distribution by default.
wy_samp : (n_sample_y, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix Y.
Uniform distribution by default.
wy_feat : (n_feature_y, ) array-like, float, optional (default = None)
Histogram assigned on columns (features) of matrix Y.
Uniform distribution by default.
reg_marginals: float or indexable object of length 1 or 2
Marginal relaxation terms for sample and feature couplings.
If `reg_marginals is a scalar` or an indexable object of length 1,
then the same value is applied to both marginal relaxations.
epsilon : scalar or indexable object of length 2, float or int, optional (default = 0)
Regularization parameters for entropic approximation of sample and feature couplings.
Allow the case where `epsilon` contains 0. In that case, the MM solver is used by default
instead of Sinkhorn solver. If `epsilon` is scalar, then the same value is applied to
both regularization of sample and feature couplings.
divergence : string, optional (default = "kl")
- If `divergence` = "kl", then Div is the Kullback-Leibler divergence.
- If `divergence` = "l2", then Div is the half squared Euclidean norm.
unbalanced_solver : string, optional (default = "sinkhorn")
Solver for the unbalanced OT subroutine.
- If `divergence` = "kl", then `unbalanced_solver` can be: "sinkhorn", "sinkhorn_log", "mm", "lbfgsb"
- If `divergence` = "l2", then `unbalanced_solver` can be "mm", "lbfgsb"
alpha : scalar or indexable object of length 2, float or int, optional (default = 0)
Coeffficient parameter of linear terms with respect to the sample and feature couplings.
If alpha is scalar, then the same alpha is applied to both linear terms.
M_samp : (n_sample_x, n_sample_y), float, optional (default = None)
Sample matrix associated to the Wasserstein linear term on sample coupling.
M_feat : (n_feature_x, n_feature_y), float, optional (default = None)
Feature matrix associated to the Wasserstein linear term on feature coupling.
rescale_plan : boolean, optional (default = True)
If True, then rescale the sample and feature transport plans within each BCD iteration,
so that they always have equal mass.
init_pi : tuple of two matrices of size (n_sample_x, n_sample_y) and
(n_feature_x, n_feature_y), optional (default = None).
Initialization of sample and feature couplings.
Uniform distributions by default.
init_duals : tuple of two tuples ((n_sample_x, ), (n_sample_y, )) and ((n_feature_x, ), (n_feature_y, )), optional (default = None).
Initialization of sample and feature dual vectors
if using Sinkhorn algorithm. Zero vectors by default.
max_iter : int, optional (default = 100)
Number of Block Coordinate Descent (BCD) iterations.
tol : float, optional (default = 1e-7)
Tolerance of BCD scheme. If the L1-norm between the current and previous
sample couplings is under this threshold, then stop BCD scheme.
max_iter_ot : int, optional (default = 100)
Number of iterations to solve each of the
two unbalanced optimal transport problems in each BCD iteration.
tol_ot : float, optional (default = 1e-7)
Tolerance of unbalanced solver for each of the
two unbalanced optimal transport problems in each BCD iteration.
log : bool, optional (default = False)
If True then the cost and four dual vectors, including
two from sample and two from feature couplings, are recorded.
verbose : bool, optional (default = False)
If True then print the COOT cost at every multiplier of `eval_bcd`-th iteration.
Returns
-------
pi_samp : (n_sample_x, n_sample_y) array-like, float
Sample coupling matrix.
pi_feat : (n_feature_x, n_feature_y) array-like, float
Feature coupling matrix.
log : dictionary, optional
Returned if `log` is True. The keys are:
error : array-like, float
list of L1 norms between the current and previous sample coupling.
duals_sample : (n_sample_x, n_sample_y)-tuple, float
Pair of dual vectors when solving OT problem w.r.t the sample coupling.
duals_feature : (n_feature_x, n_feature_y)-tuple, float
Pair of dual vectors when solving OT problem w.r.t the feature coupling.
linear : float
Linear part of the cost.
ucoot : float
Total cost.
References
----------
.. [71] Tran, H., Janati, H., Courty, N., Flamary, R., Redko, I., Demetci, P., & Singh, R.
Unbalanced Co-Optimal Transport. AAAI Conference on Artificial Intelligence, 2023.
"""
return fused_unbalanced_across_spaces_divergence(
X=X,
Y=Y,
wx_samp=wx_samp,
wx_feat=wx_feat,
wy_samp=wy_samp,
wy_feat=wy_feat,
reg_marginals=reg_marginals,
epsilon=epsilon,
reg_type="independent",
divergence=divergence,
unbalanced_solver=unbalanced_solver,
alpha=alpha,
M_samp=M_samp,
M_feat=M_feat,
rescale_plan=rescale_plan,
init_pi=init_pi,
init_duals=init_duals,
max_iter=max_iter,
tol=tol,
max_iter_ot=max_iter_ot,
tol_ot=tol_ot,
log=log,
verbose=verbose,
**kwargs_solve,
)
def unbalanced_co_optimal_transport2(
X,
Y,
wx_samp=None,
wx_feat=None,
wy_samp=None,
wy_feat=None,
reg_marginals=10,
epsilon=0,
divergence="kl",
unbalanced_solver="sinkhorn",
alpha=0,
M_samp=None,
M_feat=None,
rescale_plan=True,
init_pi=None,
init_duals=None,
max_iter=100,
tol=1e-7,
max_iter_ot=500,
tol_ot=1e-7,
log=False,
verbose=False,
**kwargs_solve,
):
r"""Compute the unbalanced Co-Optimal Transport between two Euclidean point clouds
(represented as matrices whose rows are samples and columns are the features/dimensions).
More precisely, this function returns the unbalanced Co-Optimal Transport cost between
:math:`(\mathbf{X}, \mathbf{w}_{xs}, \mathbf{w}_{xf})` and
:math:`(\mathbf{Y}, \mathbf{w}_{ys}, \mathbf{w}_{yf})`,
by solving the following problem using Block Coordinate Descent algorithm:
.. math::
\mathop{\min}_{\mathbf{P}, \mathbf{Q}} &\quad \sum_{i,j,k,l}
(\mathbf{X}_{i,k} - \mathbf{Y}_{j,l})^2 \mathbf{P}_{i,j} \mathbf{Q}_{k,l} \\
&+ \rho_s \mathbf{Div}(\mathbf{P}_{\# 1} \mathbf{Q}_{\# 1}^T | \mathbf{w}_{xs} \mathbf{w}_{ys}^T)
+ \rho_f \mathbf{Div}(\mathbf{P}_{\# 2} \mathbf{Q}_{\# 2}^T | \mathbf{w}_{xf} \mathbf{w}_{yf}^T) \\
&+ \alpha_s \sum_{i,j} \mathbf{P}_{i,j} \mathbf{M^{(s)}}_{i, j}
+ \alpha_f \sum_{k, l} \mathbf{Q}_{k,l} \mathbf{M^{(f)}}_{k, l} \\
&+ \varepsilon_s \mathbf{Div}(\mathbf{P} | \mathbf{w}_{xs} \mathbf{w}_{ys}^T)
+ \varepsilon_f \mathbf{Div}(\mathbf{Q} | \mathbf{w}_{xf} \mathbf{w}_{yf}^T)
Where:
- :math:`\mathbf{X}`: Source input (arbitrary-size) matrix
- :math:`\mathbf{Y}`: Target input (arbitrary-size) matrix
- :math:`\mathbf{M^{(s)}}`: Additional sample matrix
- :math:`\mathbf{M^{(f)}}`: Additional feature matrix
- :math:`\mathbf{w}_{xs}`: Distribution of the samples in the source space
- :math:`\mathbf{w}_{xf}`: Distribution of the features in the source space
- :math:`\mathbf{w}_{ys}`: Distribution of the samples in the target space
- :math:`\mathbf{w}_{yf}`: Distribution of the features in the target space
- :math:`\mathbf{Div}`: Either Kullback-Leibler divergence or half-squared L2 norm.
.. note:: This function allows `epsilon` to be zero. In that case, `unbalanced_method` must be either "mm" or "lbfgsb".
Also the computation of gradients is only supported for KL divergence. The case of half squared-L2 norm uses those of KL divergence.
Parameters
----------
X : (n_sample_x, n_feature_x) array-like, float
Source input matrix.
Y : (n_sample_y, n_feature_y) array-like, float
Target input matrix.
wx_samp : (n_sample_x, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix X.
Uniform distribution by default.
wx_feat : (n_feature_x, ) array-like, float, optional (default = None)
Histogram assigned on columns (features) of matrix X.
Uniform distribution by default.
wy_samp : (n_sample_y, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix Y.
Uniform distribution by default.
wy_feat : (n_feature_y, ) array-like, float, optional (default = None)
Histogram assigned on columns (features) of matrix Y.
Uniform distribution by default.
reg_marginals: float or indexable object of length 1 or 2
Marginal relaxation terms for sample and feature couplings.
If `reg_marginals` is a scalar or an indexable object of length 1,
then the same value is applied to both marginal relaxations.
epsilon : scalar or indexable object of length 2, float or int, optional (default = 0)
Regularization parameters for entropic approximation of sample and feature couplings.
Allow the case where `epsilon` contains 0. In that case, the MM solver is used by default
instead of Sinkhorn solver. If `epsilon` is scalar, then the same value is applied to
both regularization of sample and feature couplings.
divergence : string, optional (default = "kl")
- If `divergence` = "kl", then Div is the Kullback-Leibler divergence.
- If `divergence` = "l2", then Div is the half squared Euclidean norm.
unbalanced_solver : string, optional (default = "sinkhorn")
Solver for the unbalanced OT subroutine.
- If `divergence` = "kl", then `unbalanced_solver` can be: "sinkhorn", "sinkhorn_log", "mm", "lbfgsb"
- If `divergence` = "l2", then `unbalanced_solver` can be "mm", "lbfgsb"
alpha : scalar or indexable object of length 2, float or int, optional (default = 0)
Coeffficient parameter of linear terms with respect to the sample and feature couplings.
If alpha is scalar, then the same alpha is applied to both linear terms.
M_samp : (n_sample_x, n_sample_y), float, optional (default = None)
Sample matrix associated to the Wasserstein linear term on sample coupling.
M_feat : (n_feature_x, n_feature_y), float, optional (default = None)
Feature matrix associated to the Wasserstein linear term on feature coupling.
rescale_plan : boolean, optional (default = True)
If True, then rescale the transport plans in each BCD iteration,
so that they always have equal mass.
init_pi : tuple of two matrices of size (n_sample_x, n_sample_y) and
(n_feature_x, n_feature_y), optional (default = None).
Initialization of sample and feature couplings.
Uniform distributions by default.
init_duals : tuple of two tuples ((n_sample_x, ), (n_sample_y, )) and ((n_feature_x, ), (n_feature_y, )), optional (default = None).
Initialization of sample and feature dual vectors
if using Sinkhorn algorithm. Zero vectors by default.
max_iter : int, optional (default = 100)
Number of Block Coordinate Descent (BCD) iterations.
tol : float, optional (default = 1e-7)
Tolerance of BCD scheme. If the L1-norm between the current and previous
sample couplings is under this threshold, then stop BCD scheme.
max_iter_ot : int, optional (default = 100)
Number of iterations to solve each of the
two unbalanced optimal transport problems in each BCD iteration.
tol_ot : float, optional (default = 1e-7)
Tolerance of unbalanced solver for each of the
two unbalanced optimal transport problems in each BCD iteration.
log : bool, optional (default = False)
If True then the cost and four dual vectors, including
two from sample and two from feature couplings, are recorded.
verbose : bool, optional (default = False)
If True then print the COOT cost at every multiplier of `eval_bcd`-th iteration.
Returns
-------
ucoot : float
UCOOT cost.
log : dictionary, optional
Returned if `log` is True. The keys are:
error : array-like, float
list of L1 norms between the current and previous sample coupling.
duals_sample : (n_sample_x, n_sample_y)-tuple, float
Pair of dual vectors when solving OT problem w.r.t the sample coupling.
duals_feature : (n_feature_x, n_feature_y)-tuple, float
Pair of dual vectors when solving OT problem w.r.t the feature coupling.
linear : float
Linear part of UCOOT cost.
ucoot : float
UCOOT cost.
backend
The proper backend for all input arrays
References
----------
.. [71] Tran, H., Janati, H., Courty, N., Flamary, R., Redko, I., Demetci, P., & Singh, R.
Unbalanced Co-Optimal Transport. AAAI Conference on Artificial Intelligence, 2023.
"""
if divergence != "kl":
warnings.warn(
"The computation of gradients is only supported for KL divergence, not \
for {} divergence".format(divergence)
)
pi_samp, pi_feat, log_ucoot = unbalanced_co_optimal_transport(
X=X,
Y=Y,
wx_samp=wx_samp,
wx_feat=wx_feat,
wy_samp=wy_samp,
wy_feat=wy_feat,
reg_marginals=reg_marginals,
epsilon=epsilon,
divergence=divergence,
unbalanced_solver=unbalanced_solver,
alpha=alpha,
M_samp=M_samp,
M_feat=M_feat,
rescale_plan=rescale_plan,
init_pi=init_pi,
init_duals=init_duals,
max_iter=max_iter,
tol=tol,
max_iter_ot=max_iter_ot,
tol_ot=tol_ot,
log=True,
verbose=verbose,
**kwargs_solve,
)
nx = log_ucoot["backend"]
nx_samp, nx_feat = X.shape
ny_samp, ny_feat = Y.shape
# measures on rows and columns
if wx_samp is None:
wx_samp = nx.ones(nx_samp, type_as=X) / nx_samp
if wx_feat is None:
wx_feat = nx.ones(nx_feat, type_as=X) / nx_feat
if wy_samp is None:
wy_samp = nx.ones(ny_samp, type_as=Y) / ny_samp
if wy_feat is None:
wy_feat = nx.ones(ny_feat, type_as=Y) / ny_feat
# extract parameters
rho_x, rho_y = get_parameter_pair(reg_marginals)
eps_samp, eps_feat = get_parameter_pair(epsilon)
# calculate marginals
pi1_samp, pi2_samp = nx.sum(pi_samp, 1), nx.sum(pi_samp, 0)
pi1_feat, pi2_feat = nx.sum(pi_feat, 1), nx.sum(pi_feat, 0)
m_samp, m_feat = nx.sum(pi1_samp), nx.sum(pi1_feat)
m_wx_feat, m_wx_samp = nx.sum(wx_feat), nx.sum(wx_samp)
m_wy_feat, m_wy_samp = nx.sum(wy_feat), nx.sum(wy_samp)
# calculate subgradients
gradX = 2 * X * (pi1_samp[:, None] * pi1_feat[None, :]) - 2 * nx.dot(
nx.dot(pi_samp, Y), pi_feat.T
) # shape (nx_samp, nx_feat)
gradY = 2 * Y * (pi2_samp[:, None] * pi2_feat[None, :]) - 2 * nx.dot(
nx.dot(pi_samp.T, X), pi_feat
) # shape (ny_samp, ny_feat)
grad_wx_samp = rho_x * (m_wx_feat - m_feat * pi1_samp / wx_samp) + eps_samp * (
m_wy_samp - pi1_samp / wx_samp
)
grad_wx_feat = rho_x * (m_wx_samp - m_samp * pi1_feat / wx_feat) + eps_feat * (
m_wy_feat - pi1_feat / wx_feat
)
grad_wy_samp = rho_y * (m_wy_feat - m_feat * pi2_samp / wy_samp) + eps_samp * (
m_wx_samp - pi2_samp / wy_samp
)
grad_wy_feat = rho_y * (m_wy_samp - m_samp * pi2_feat / wy_feat) + eps_feat * (
m_wx_feat - pi2_feat / wy_feat
)
# set gradients
ucoot = log_ucoot["ucoot_cost"]
ucoot = nx.set_gradients(
ucoot,
(X, Y, wx_samp, wx_feat, wy_samp, wy_feat),
(gradX, gradY, grad_wx_samp, grad_wx_feat, grad_wy_samp, grad_wy_feat),
)
if log:
return ucoot, log_ucoot
else:
return ucoot
def fused_unbalanced_gromov_wasserstein(
Cx,
Cy,
wx=None,
wy=None,
reg_marginals=10,
epsilon=0,
divergence="kl",
unbalanced_solver="mm",
alpha=0,
M=None,
init_duals=None,
init_pi=None,
max_iter=100,
tol=1e-7,
max_iter_ot=500,
tol_ot=1e-7,
log=False,
verbose=False,
**kwargs_solve,
):
r"""Compute the lower bound of the fused unbalanced Gromov-Wasserstein (FUGW) between two similarity matrices.
In practice, this lower bound is used interchangeably with the true FUGW.
More precisely, this function returns the transport plan between
:math:`(\mathbf{C^X}, \mathbf{w_X})` and :math:`(\mathbf{C^Y}, \mathbf{w_Y})`,
by solving the following problem using Block Coordinate Descent algorithm:
.. math::
\mathop{\arg \min}_{\substack{\mathbf{P}, \mathbf{Q}: \\ mass(P) = mass(Q)}}
&\quad \sum_{i,j,k,l} (\mathbf{C^X}_{i,k} - \mathbf{C^Y}_{j,l})^2 \mathbf{P}_{i,j} \mathbf{Q}_{k,l}
+ \frac{\alpha}{2} \sum_{i,j} (\mathbf{P}_{i,j} + \mathbf{Q}_{i,j}) \mathbf{M}_{i, j} \\
&+ \rho_1 \mathbf{Div}(\mathbf{P}_{\# 1} \mathbf{Q}_{\# 1}^T | \mathbf{w_X} \mathbf{w_X}^T)
+ \rho_2 \mathbf{Div}(\mathbf{P}_{\# 2} \mathbf{Q}_{\# 2}^T | \mathbf{w_Y} \mathbf{w_Y}^T) \\
&+ \varepsilon \mathbf{Div}(\mathbf{P} \otimes \mathbf{Q} | (\mathbf{w_X} \mathbf{w_Y}^T) \otimes (\mathbf{w_X} \mathbf{w_Y}^T))
Where:
- :math:`\mathbf{C^X}`: Source similarity matrix
- :math:`\mathbf{C^Y}`: Target similarity matrix
- :math:`\mathbf{M}`: Sample matrix corresponding to the Wasserstein term
- :math:`\mathbf{w_X}`: Distribution of the samples in the source space
- :math:`\mathbf{w_Y}`: Distribution of the samples in the target space
- :math:`\mathbf{Div}`: Either Kullback-Leibler divergence or half-squared L2 norm.
.. note:: This function allows epsilon to be zero. In that case, `unbalanced_method` must be either "mm" or "lbfgsb".
Parameters
----------
Cx : (n_sample_x, n_feature_x) array-like, float
Source similarity matrix.
Cy : (n_sample_y, n_feature_y) array-like, float
Target similarity matrix.
wx : (n_sample_x, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix Cx.
Uniform distribution by default.
wy : (n_sample_y, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix Cy.
Uniform distribution by default.
reg_marginals: float or indexable object of length 1 or 2
Marginal relaxation terms for sample and feature couplings.
If `reg_marginals` is a scalar or an indexable object of length 1,
then the same value is applied to both marginal relaxations.
epsilon : scalar, float or int, optional (default = 0)
Regularization parameters for entropic approximation of sample and feature couplings.
Allow the case where `epsilon` contains 0. In that case, the MM solver is used by default
instead of Sinkhorn solver. If `epsilon` is scalar, then the same value is applied to
both regularization of sample and feature couplings.
divergence : string, optional (default = "kl")
- If `divergence` = "kl", then Div is the Kullback-Leibler divergence.
- If `divergence` = "l2", then Div is the half squared Euclidean norm.
unbalanced_solver : string, optional (default = "sinkhorn")
Solver for the unbalanced OT subroutine.
- If `divergence` = "kl", then `unbalanced_solver` can be: "sinkhorn", "sinkhorn_log", "mm", "lbfgsb"
- If `divergence` = "l2", then `unbalanced_solver` can be "mm", "lbfgsb"
alpha : scalar, float or int, optional (default = 0)
Coeffficient parameter of linear terms with respect to the sample and feature couplings.
If alpha is scalar, then the same alpha is applied to both linear terms.
M : (n_sample_x, n_sample_y), float, optional (default = None)
Sample matrix associated to the Wasserstein linear term on sample coupling.
init_pi :(n_sample_x, n_sample_y) array-like, optional (default = None)
Initialization of sample coupling. By default = :math:`w_X w_Y^T`.
init_duals : tuple of vectors ((n_sample_x, ), (n_sample_y, )), optional (default = None).
Initialization of sample and feature dual vectors
if using Sinkhorn algorithm. Zero vectors by default.
max_iter : int, optional (default = 100)
Number of Block Coordinate Descent (BCD) iterations.
tol : float, optional (default = 1e-7)
Tolerance of BCD scheme. If the L1-norm between the current and previous
sample couplings is under this threshold, then stop BCD scheme.
max_iter_ot : int, optional (default = 100)
Number of iterations to solve each of the
two unbalanced optimal transport problems in each BCD iteration.
tol_ot : float, optional (default = 1e-7)
Tolerance of unbalanced solver for each of the
two unbalanced optimal transport problems in each BCD iteration.
log : bool, optional (default = False)
If True then the cost and four dual vectors, including
two from sample and two from feature couplings, are recorded.
verbose : bool, optional (default = False)
If True then print the COOT cost at every multiplier of `eval_bcd`-th iteration.
Returns
-------
pi_samp : (n_sample_x, n_sample_y) array-like, float
Sample coupling matrix.
In practice, we use this matrix as solution of FUGW.
pi_samp2 : (n_sample_x, n_sample_y) array-like, float
Second sample coupling matrix.
In practice, we usually ignore this output.
log : dictionary, optional
Returned if `log` is True. The keys are:
error : array-like, float
list of L1 norms between the current and previous sample couplings.
duals : (n_sample_x, n_sample_y)-tuple, float
Pair of dual vectors when solving OT problem w.r.t the sample coupling.
linear : float
Linear part of FUGW cost.
fugw_cost : float
Total FUGW cost.
backend
The proper backend for all input arrays
References
----------
.. [70] Thual, A., Tran, H., Zemskova, T., Courty, N., Flamary, R., Dehaene, S., & Thirion, B.
Aligning individual brains with Fused Unbalanced Gromov-Wasserstein.
Advances in Neural Information Systems, 35 (2022).
.. [72] Thibault Séjourné, François-Xavier Vialard, & Gabriel Peyré.
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation.
Neural Information Processing Systems, 34 (2021).
"""
alpha = (alpha / 2, alpha / 2)
pi_samp, pi_feat, dict_log = fused_unbalanced_across_spaces_divergence(
X=Cx,
Y=Cy,
wx_samp=wx,
wx_feat=wx,
wy_samp=wy,
wy_feat=wy,
reg_marginals=reg_marginals,
epsilon=epsilon,
reg_type="joint",
divergence=divergence,
unbalanced_solver=unbalanced_solver,
alpha=alpha,
M_samp=M,
M_feat=M,
rescale_plan=True,
init_pi=(init_pi, init_pi),
init_duals=(init_duals, init_duals),
max_iter=max_iter,
tol=tol,
max_iter_ot=max_iter_ot,
tol_ot=tol_ot,
log=True,
verbose=verbose,
**kwargs_solve,
)
if log:
log_fugw = {
"error": dict_log["error"],
"duals": dict_log["duals_sample"],
"linear_cost": dict_log["linear_cost"],
"fugw_cost": dict_log["ucoot_cost"],
"backend": dict_log["backend"],
}
return pi_samp, pi_feat, log_fugw
else:
return pi_samp, pi_feat
def fused_unbalanced_gromov_wasserstein2(
Cx,
Cy,
wx=None,
wy=None,
reg_marginals=10,
epsilon=0,
divergence="kl",
unbalanced_solver="mm",
alpha=0,
M=None,
init_duals=None,
init_pi=None,
max_iter=100,
tol=1e-7,
max_iter_ot=500,
tol_ot=1e-7,
log=False,
verbose=False,
**kwargs_solve,
):
r"""Compute the lower bound of the fused unbalanced Gromov-Wasserstein (FUGW) between two similarity matrices.
In practice, this lower bound is used interchangeably with the true FUGW.
More precisely, this function returns the lower bound of the fused unbalanced Gromov-Wasserstein cost between
:math:`(\mathbf{C^X}, \mathbf{w_X})` and :math:`(\mathbf{C^Y}, \mathbf{w_Y})`,
by solving the following problem using Block Coordinate Descent algorithm:
.. math::
\mathop{\min}_{\substack{\mathbf{P}, \mathbf{Q}: \\ mass(P) = mass(Q)}}
&\quad \sum_{i,j,k,l} (\mathbf{C^X}_{i,k} - \mathbf{C^Y}_{j,l})^2 \mathbf{P}_{i,j} \mathbf{Q}_{k,l}
+ \frac{\alpha}{2} \sum_{i,j} (\mathbf{P}_{i,j} + \mathbf{Q}_{i,j}) \mathbf{M}_{i, j} \\
&+ \rho_1 \mathbf{Div}(\mathbf{P}_{\# 1} \mathbf{Q}_{\# 1}^T | \mathbf{w_X} \mathbf{w_X}^T)
+ \rho_2 \mathbf{Div}(\mathbf{P}_{\# 2} \mathbf{Q}_{\# 2}^T | \mathbf{w_Y} \mathbf{w_Y}^T) \\
&+ \varepsilon \mathbf{Div}(\mathbf{P} \otimes \mathbf{Q} | (\mathbf{w_X} \mathbf{w_Y}^T) \otimes (\mathbf{w_X} \mathbf{w_Y}^T))
Where:
- :math:`\mathbf{C^X}`: Source similarity matrix
- :math:`\mathbf{C^Y}`: Target similarity matrix
- :math:`\mathbf{M}`: Sample matrix corresponding to the Wasserstein term
- :math:`\mathbf{w_X}`: Distribution of the samples in the source space
- :math:`\mathbf{w_Y}`: Distribution of the samples in the target space
- :math:`\mathbf{Div}`: Either Kullback-Leibler divergence or half-squared L2 norm.
.. note:: This function allows `epsilon` to be zero. In that case, unbalanced_method must be either "mm" or "lbfgsb".
Also the computation of gradients is only supported for KL divergence, but not for half squared-L2 norm. In case of half squared-L2 norm, the calculation of KL divergence will be used.
Parameters
----------
Cx : (n_sample_x, n_feature_x) array-like, float
Source similarity matrix.
Cy : (n_sample_y, n_feature_y) array-like, float
Target similarity matrix.
wx : (n_sample_x, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix Cx.
Uniform distribution by default.
wy : (n_sample_y, ) array-like, float, optional (default = None)
Histogram assigned on rows (samples) of matrix Cy.
Uniform distribution by default.
reg_marginals: float or indexable object of length 1 or 2
Marginal relaxation terms for sample and feature couplings.
If `reg_marginals` is a scalar or an indexable object of length 1,
then the same value is applied to both marginal relaxations.
epsilon : scalar, float or int, optional (default = 0)
Regularization parameters for entropic approximation of sample and feature couplings.
Allow the case where `epsilon` contains 0. In that case, the MM solver is used by default
instead of Sinkhorn solver. If `epsilon` is scalar, then the same value is applied to
both regularization of sample and feature couplings.
divergence : string, optional (default = "kl")
- If `divergence` = "kl", then Div is the Kullback-Leibler divergence.
- If `divergence` = "l2", then Div is the half squared Euclidean norm.
unbalanced_solver : string, optional (default = "sinkhorn")
Solver for the unbalanced OT subroutine.
- If `divergence` = "kl", then `unbalanced_solver` can be: "sinkhorn", "sinkhorn_log", "mm", "lbfgsb"
- If `divergence` = "l2", then `unbalanced_solver` can be "mm", "lbfgsb"
alpha : scalar, float or int, optional (default = 0)
Coeffficient parameter of linear terms with respect to the sample and feature couplings.
If alpha is scalar, then the same alpha is applied to both linear terms.
M : (n_sample_x, n_sample_y), float, optional (default = None)
Sample matrix associated to the Wasserstein linear term on sample coupling.
init_pi :(n_sample_x, n_sample_y) array-like, optional (default = None)
Initialization of sample coupling. By default = :math:`w_X w_Y^T`.
init_duals : tuple of vectors ((n_sample_x, ), (n_sample_y, )), optional (default = None).
Initialization of sample and feature dual vectors
if using Sinkhorn algorithm. Zero vectors by default.
max_iter : int, optional (default = 100)
Number of Block Coordinate Descent (BCD) iterations.
tol : float, optional (default = 1e-7)
Tolerance of BCD scheme. If the L1-norm between the current and previous
sample couplings is under this threshold, then stop BCD scheme.
max_iter_ot : int, optional (default = 100)
Number of iterations to solve each of the
two unbalanced optimal transport problems in each BCD iteration.
tol_ot : float, optional (default = 1e-7)
Tolerance of unbalanced solver for each of the
two unbalanced optimal transport problems in each BCD iteration.
log : bool, optional (default = False)
If True then the cost and four dual vectors, including
two from sample and two from feature couplings, are recorded.
verbose : bool, optional (default = False)
If True then print the COOT cost at every multiplier of `eval_bcd`-th iteration.
Returns
-------
fugw : float
Total FUGW cost
log : dictionary, optional
Returned if `log` is True. The keys are:
error : array-like, float
list of L1 norms between the current and previous sample couplings.
duals : (n_sample_x, n_sample_y)-tuple, float
Pair of dual vectors when solving OT problem w.r.t the sample coupling.
linear : float
Linear part of FUGW cost.
fugw_cost : float
Total FUGW cost.
backend
The proper backend for all input arrays
References
----------
.. [70] Thual, A., Tran, H., Zemskova, T., Courty, N., Flamary, R., Dehaene, S., & Thirion, B.
Aligning individual brains with Fused Unbalanced Gromov-Wasserstein.
Advances in Neural Information Systems, 35 (2022).
.. [72] Thibault Séjourné, François-Xavier Vialard, & Gabriel Peyré.
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation.
Neural Information Processing Systems, 34 (2021).
"""
if divergence != "kl":
warnings.warn(
"The computation of gradients is only supported for KL divergence, \
but not for {} divergence. The gradient of the KL case will be used.".format(
divergence
)
)
pi_samp, pi_feat, log_fugw = fused_unbalanced_gromov_wasserstein(
Cx=Cx,
Cy=Cy,
wx=wx,
wy=wy,
reg_marginals=reg_marginals,
epsilon=epsilon,
divergence=divergence,
unbalanced_solver=unbalanced_solver,
alpha=alpha,
M=M,
init_duals=init_duals,
init_pi=init_pi,
max_iter=max_iter,
tol=tol,
max_iter_ot=max_iter_ot,
tol_ot=tol_ot,
log=True,
verbose=verbose,
**kwargs_solve,
)
nx = log_fugw["backend"]
sx, sy = Cx.shape[0], Cy.shape[0]
# measures on rows and columns
if wx is None:
wx = nx.ones(sx, type_as=Cx) / sx
if wy is None:
wy = nx.ones(sy, type_as=Cy) / sy
# calculate marginals
pi1_samp, pi2_samp = nx.sum(pi_samp, 1), nx.sum(pi_samp, 0)
pi1_feat, pi2_feat = nx.sum(pi_feat, 1), nx.sum(pi_feat, 0)
m_samp, m_feat = nx.sum(pi1_samp), nx.sum(pi1_feat)
m_wx, m_wy = nx.sum(wx), nx.sum(wy)
# calculate subgradients
gradX = 2 * Cx * (pi1_samp[:, None] * pi1_feat[None, :]) - 2 * nx.dot(
nx.dot(pi_samp, Cy), pi_feat.T
) # shape (nx_samp, nx_feat)
gradY = 2 * Cy * (pi2_samp[:, None] * pi2_feat[None, :]) - 2 * nx.dot(
nx.dot(pi_samp.T, Cx), pi_feat
) # shape (ny_samp, ny_feat)
gradM = alpha / 2 * (pi_samp + pi_feat)
rho_x, rho_y = get_parameter_pair(reg_marginals)
grad_wx = (
2 * m_wx * (rho_x + epsilon * m_wy**2)
- (rho_x + epsilon) * (m_feat * pi1_samp + m_samp * pi1_feat) / wx
)
grad_wy = (
2 * m_wy * (rho_y + epsilon * m_wx**2)
- (rho_y + epsilon) * (m_feat * pi2_samp + m_samp * pi2_feat) / wy
)
# set gradients
fugw = log_fugw["fugw_cost"]
fugw = nx.set_gradients(
fugw, (Cx, Cy, M, wx, wy), (gradX, gradY, gradM, grad_wx, grad_wy)
)
if log:
return fugw, log_fugw
else:
return fugw
|