1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
|
# -*- coding: utf-8 -*-
"""
Exact solvers for the 1D Wasserstein distance using cvxopt
"""
# Author: Remi Flamary <remi.flamary@unice.fr>
# Author: Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License
import numpy as np
import warnings
from .emd_wrap import emd_1d_sorted
from ..backend import get_backend
from ..utils import list_to_array
def quantile_function(qs, cws, xs):
r"""Computes the quantile function of an empirical distribution
Parameters
----------
qs: array-like, shape (n,)
Quantiles at which the quantile function is evaluated
cws: array-like, shape (m, ...)
cumulative weights of the 1D empirical distribution, if batched, must be similar to xs
xs: array-like, shape (n, ...)
locations of the 1D empirical distribution, batched against the `xs.ndim - 1` first dimensions
Returns
-------
q: array-like, shape (..., n)
The quantiles of the distribution
"""
nx = get_backend(qs, cws)
n = xs.shape[0]
if nx.__name__ == "torch":
# this is to ensure the best performance for torch searchsorted
# and avoid a warning related to non-contiguous arrays
cws = cws.T.contiguous()
qs = qs.T.contiguous()
else:
cws = cws.T
qs = qs.T
idx = nx.searchsorted(cws, qs).T
return nx.take_along_axis(xs, nx.clip(idx, 0, n - 1), axis=0)
def wasserstein_1d(
u_values, v_values, u_weights=None, v_weights=None, p=1, require_sort=True
):
r"""
Computes the 1 dimensional OT loss [15] between two (batched) empirical
distributions
.. math:
OT_{loss} = \int_0^1 |cdf_u^{-1}(q) - cdf_v^{-1}(q)|^p dq
It is formally the p-Wasserstein distance raised to the power p.
We do so in a vectorized way by first building the individual quantile functions then integrating them.
This function should be preferred to `emd_1d` whenever the backend is
different to numpy, and when gradients over
either sample positions or weights are required.
Parameters
----------
u_values: array-like, shape (n, ...)
locations of the first empirical distribution
v_values: array-like, shape (m, ...)
locations of the second empirical distribution
u_weights: array-like, shape (n, ...), optional
weights of the first empirical distribution, if None then uniform weights are used
v_weights: array-like, shape (m, ...), optional
weights of the second empirical distribution, if None then uniform weights are used
p: int, optional
order of the ground metric used, should be at least 1 (see [2, Chap. 2], default is 1
require_sort: bool, optional
sort the distributions atoms locations, if False we will consider they have been sorted prior to being passed to
the function, default is True
Returns
-------
cost: float/array-like, shape (...)
the batched EMD
References
----------
.. [15] Peyré, G., & Cuturi, M. (2018). Computational Optimal Transport.
"""
assert p >= 1, "The OT loss is only valid for p>=1, {p} was given".format(p=p)
if u_weights is not None and v_weights is not None:
nx = get_backend(u_values, v_values, u_weights, v_weights)
else:
nx = get_backend(u_values, v_values)
n = u_values.shape[0]
m = v_values.shape[0]
if u_weights is None:
u_weights = nx.full(u_values.shape, 1.0 / n, type_as=u_values)
elif u_weights.ndim != u_values.ndim:
u_weights = nx.repeat(u_weights[..., None], u_values.shape[-1], -1)
if v_weights is None:
v_weights = nx.full(v_values.shape, 1.0 / m, type_as=v_values)
elif v_weights.ndim != v_values.ndim:
v_weights = nx.repeat(v_weights[..., None], v_values.shape[-1], -1)
if require_sort:
u_sorter = nx.argsort(u_values, 0)
u_values = nx.take_along_axis(u_values, u_sorter, 0)
v_sorter = nx.argsort(v_values, 0)
v_values = nx.take_along_axis(v_values, v_sorter, 0)
u_weights = nx.take_along_axis(u_weights, u_sorter, 0)
v_weights = nx.take_along_axis(v_weights, v_sorter, 0)
u_cumweights = nx.cumsum(u_weights, 0)
v_cumweights = nx.cumsum(v_weights, 0)
qs = nx.sort(nx.concatenate((u_cumweights, v_cumweights), 0), 0)
u_quantiles = quantile_function(qs, u_cumweights, u_values)
v_quantiles = quantile_function(qs, v_cumweights, v_values)
qs = nx.zero_pad(qs, pad_width=[(1, 0)] + (qs.ndim - 1) * [(0, 0)])
delta = qs[1:, ...] - qs[:-1, ...]
diff_quantiles = nx.abs(u_quantiles - v_quantiles)
if p == 1:
return nx.sum(delta * diff_quantiles, axis=0)
return nx.sum(delta * nx.power(diff_quantiles, p), axis=0)
def emd_1d(
x_a,
x_b,
a=None,
b=None,
metric="sqeuclidean",
p=1.0,
dense=True,
log=False,
check_marginals=True,
):
r"""Solves the Earth Movers distance problem between 1d measures and returns
the OT matrix
.. math::
\gamma = arg\min_\gamma \sum_i \sum_j \gamma_{ij} d(x_a[i], x_b[j])
s.t. \gamma 1 = a,
\gamma^T 1= b,
\gamma\geq 0
where :
- d is the metric
- x_a and x_b are the samples
- a and b are the sample weights
This implementation only supports metrics
of the form :math:`d(x, y) = |x - y|^p`.
Uses the algorithm detailed in [1]_
Parameters
----------
x_a : (ns,) or (ns, 1) ndarray, float64
Source dirac locations (on the real line)
x_b : (nt,) or (ns, 1) ndarray, float64
Target dirac locations (on the real line)
a : (ns,) ndarray, float64, optional
Source histogram (default is uniform weight)
b : (nt,) ndarray, float64, optional
Target histogram (default is uniform weight)
metric: str, optional (default='sqeuclidean')
Metric to be used. Only works with either of the strings
`'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'`.
p: float, optional (default=1.0)
The p-norm to apply for if metric='minkowski'
dense: boolean, optional (default=True)
If True, returns math:`\gamma` as a dense ndarray of shape (ns, nt).
Otherwise returns a sparse representation using scipy's `coo_matrix`
format. Due to implementation details, this function runs faster when
`'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'` metrics
are used.
log: boolean, optional (default=False)
If True, returns a dictionary containing the cost.
Otherwise returns only the optimal transportation matrix.
check_marginals: bool, optional (default=True)
If True, checks that the marginals mass are equal. If False, skips the
check.
Returns
-------
gamma: (ns, nt) ndarray
Optimal transportation matrix for the given parameters
log: dict
If input log is True, a dictionary containing the cost
Examples
--------
Simple example with obvious solution. The function emd_1d accepts lists and
performs automatic conversion to numpy arrays
>>> import ot
>>> a=[.5, .5]
>>> b=[.5, .5]
>>> x_a = [2., 0.]
>>> x_b = [0., 3.]
>>> ot.emd_1d(x_a, x_b, a, b)
array([[0. , 0.5],
[0.5, 0. ]])
>>> ot.emd_1d(x_a, x_b)
array([[0. , 0.5],
[0.5, 0. ]])
References
----------
.. [1] Peyré, G., & Cuturi, M. (2017). "Computational Optimal
Transport", 2018.
See Also
--------
ot.lp.emd : EMD for multidimensional distributions
ot.lp.emd2_1d : EMD for 1d distributions (returns cost instead of the
transportation matrix)
"""
x_a, x_b = list_to_array(x_a, x_b)
nx = get_backend(x_a, x_b)
if a is not None:
a = list_to_array(a, nx=nx)
if b is not None:
b = list_to_array(b, nx=nx)
assert (
x_a.ndim == 1 or x_a.ndim == 2 and x_a.shape[1] == 1
), "emd_1d should only be used with monodimensional data"
assert (
x_b.ndim == 1 or x_b.ndim == 2 and x_b.shape[1] == 1
), "emd_1d should only be used with monodimensional data"
if metric not in ["sqeuclidean", "minkowski", "cityblock", "euclidean"]:
raise ValueError(
"Solver for EMD in 1d only supports metrics "
+ "from the following list: "
+ "`['sqeuclidean', 'minkowski', 'cityblock', 'euclidean']`"
)
# if empty array given then use uniform distributions
if a is None or a.ndim == 0 or len(a) == 0:
a = nx.ones((x_a.shape[0],), type_as=x_a) / x_a.shape[0]
if b is None or b.ndim == 0 or len(b) == 0:
b = nx.ones((x_b.shape[0],), type_as=x_b) / x_b.shape[0]
# ensure that same mass
if check_marginals:
np.testing.assert_almost_equal(
nx.to_numpy(nx.sum(a, axis=0)),
nx.to_numpy(nx.sum(b, axis=0)),
err_msg="a and b vector must have the same sum",
decimal=6,
)
b = b * nx.sum(a) / nx.sum(b)
x_a_1d = nx.reshape(x_a, (-1,))
x_b_1d = nx.reshape(x_b, (-1,))
perm_a = nx.argsort(x_a_1d)
perm_b = nx.argsort(x_b_1d)
G_sorted, indices, cost = emd_1d_sorted(
nx.to_numpy(a[perm_a]).astype(np.float64),
nx.to_numpy(b[perm_b]).astype(np.float64),
nx.to_numpy(x_a_1d[perm_a]).astype(np.float64),
nx.to_numpy(x_b_1d[perm_b]).astype(np.float64),
metric=metric,
p=p,
)
G = nx.coo_matrix(
G_sorted,
perm_a[indices[:, 0]],
perm_b[indices[:, 1]],
shape=(a.shape[0], b.shape[0]),
type_as=x_a,
)
if dense:
G = nx.todense(G)
elif str(nx) == "jax":
warnings.warn("JAX does not support sparse matrices, converting to dense")
if log:
log = {"cost": nx.from_numpy(cost, type_as=x_a)}
return G, log
return G
def emd2_1d(
x_a, x_b, a=None, b=None, metric="sqeuclidean", p=1.0, dense=True, log=False
):
r"""Solves the Earth Movers distance problem between 1d measures and returns
the loss
.. math::
\gamma = arg\min_\gamma \sum_i \sum_j \gamma_{ij} d(x_a[i], x_b[j])
s.t. \gamma 1 = a,
\gamma^T 1= b,
\gamma\geq 0
where :
- d is the metric
- x_a and x_b are the samples
- a and b are the sample weights
This implementation only supports metrics
of the form :math:`d(x, y) = |x - y|^p`.
Uses the algorithm detailed in [1]_
Parameters
----------
x_a : (ns,) or (ns, 1) ndarray, float64
Source dirac locations (on the real line)
x_b : (nt,) or (ns, 1) ndarray, float64
Target dirac locations (on the real line)
a : (ns,) ndarray, float64, optional
Source histogram (default is uniform weight)
b : (nt,) ndarray, float64, optional
Target histogram (default is uniform weight)
metric: str, optional (default='sqeuclidean')
Metric to be used. Only works with either of the strings
`'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'`.
p: float, optional (default=1.0)
The p-norm to apply for if metric='minkowski'
dense: boolean, optional (default=True)
If True, returns math:`\gamma` as a dense ndarray of shape (ns, nt).
Otherwise returns a sparse representation using scipy's `coo_matrix`
format. Only used if log is set to True. Due to implementation details,
this function runs faster when dense is set to False.
log: boolean, optional (default=False)
If True, returns a dictionary containing the transportation matrix.
Otherwise returns only the loss.
Returns
-------
loss: float
Cost associated to the optimal transportation
log: dict
If input log is True, a dictionary containing the Optimal transportation
matrix for the given parameters
Examples
--------
Simple example with obvious solution. The function emd2_1d accepts lists and
performs automatic conversion to numpy arrays
>>> import ot
>>> a=[.5, .5]
>>> b=[.5, .5]
>>> x_a = [2., 0.]
>>> x_b = [0., 3.]
>>> ot.emd2_1d(x_a, x_b, a, b)
0.5
>>> ot.emd2_1d(x_a, x_b)
0.5
References
----------
.. [1] Peyré, G., & Cuturi, M. (2017). "Computational Optimal
Transport", 2018.
See Also
--------
ot.lp.emd2 : EMD for multidimensional distributions
ot.lp.emd_1d : EMD for 1d distributions (returns the transportation matrix
instead of the cost)
"""
# If we do not return G (log==False), then we should not to cast it to dense
# (useless overhead)
G, log_emd = emd_1d(
x_a=x_a, x_b=x_b, a=a, b=b, metric=metric, p=p, dense=dense and log, log=True
)
cost = log_emd["cost"]
if log:
log_emd = {"G": G}
return cost, log_emd
return cost
def roll_cols(M, shifts):
r"""
Utils functions which allow to shift the order of each row of a 2d matrix
Parameters
----------
M : (nr, nc) ndarray
Matrix to shift
shifts: int or (nr,) ndarray
Returns
-------
Shifted array
Examples
--------
>>> M = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> roll_cols(M, 2)
array([[2, 3, 1],
[5, 6, 4],
[8, 9, 7]])
>>> roll_cols(M, np.array([[1],[2],[1]]))
array([[3, 1, 2],
[5, 6, 4],
[9, 7, 8]])
References
----------
https://stackoverflow.com/questions/66596699/how-to-shift-columns-or-rows-in-a-tensor-with-different-offsets-in-pytorch
"""
nx = get_backend(M)
n_rows, n_cols = M.shape
arange1 = nx.tile(
nx.reshape(nx.arange(n_cols, type_as=shifts), (1, n_cols)), (n_rows, 1)
)
arange2 = (arange1 - shifts) % n_cols
return nx.take_along_axis(M, arange2, 1)
def derivative_cost_on_circle(theta, u_values, v_values, u_cdf, v_cdf, p=2):
r"""Computes the left and right derivative of the cost (Equation (6.3) and (6.4) of [1])
Parameters
----------
theta: array-like, shape (n_batch, n)
Cuts on the circle
u_values: array-like, shape (n_batch, n)
locations of the first empirical distribution
v_values: array-like, shape (n_batch, n)
locations of the second empirical distribution
u_cdf: array-like, shape (n_batch, n)
cdf of the first empirical distribution
v_cdf: array-like, shape (n_batch, n)
cdf of the second empirical distribution
p: float, optional = 2
Power p used for computing the Wasserstein distance
Returns
-------
dCp: array-like, shape (n_batch, 1)
The batched right derivative
dCm: array-like, shape (n_batch, 1)
The batched left derivative
References
---------
.. [44] Delon, Julie, Julien Salomon, and Andrei Sobolevski. "Fast transport optimization for Monge costs on the circle." SIAM Journal on Applied Mathematics 70.7 (2010): 2239-2258.
"""
nx = get_backend(theta, u_values, v_values, u_cdf, v_cdf)
v_values = nx.copy(v_values)
n = u_values.shape[-1]
m_batch, m = v_values.shape
v_cdf_theta = v_cdf - (theta - nx.floor(theta))
mask_p = v_cdf_theta >= 0
mask_n = v_cdf_theta < 0
v_values[mask_n] += nx.floor(theta)[mask_n] + 1
v_values[mask_p] += nx.floor(theta)[mask_p]
if nx.any(mask_n) and nx.any(mask_p):
v_cdf_theta[mask_n] += 1
v_cdf_theta2 = nx.copy(v_cdf_theta)
v_cdf_theta2[mask_n] = np.inf
shift = -nx.argmin(v_cdf_theta2, axis=-1)
v_cdf_theta = roll_cols(v_cdf_theta, nx.reshape(shift, (-1, 1)))
v_values = roll_cols(v_values, nx.reshape(shift, (-1, 1)))
v_values = nx.concatenate(
[v_values, nx.reshape(v_values[:, 0], (-1, 1)) + 1], axis=1
)
if nx.__name__ == "torch":
# this is to ensure the best performance for torch searchsorted
# and avoid a warning related to non-contiguous arrays
u_cdf = u_cdf.contiguous()
v_cdf_theta = v_cdf_theta.contiguous()
# quantiles of F_u evaluated in F_v^\theta
u_index = nx.searchsorted(u_cdf, v_cdf_theta)
u_icdf_theta = nx.take_along_axis(u_values, nx.clip(u_index, 0, n - 1), -1)
# Deal with 1
u_cdfm = nx.concatenate([u_cdf, nx.reshape(u_cdf[:, 0], (-1, 1)) + 1], axis=1)
u_valuesm = nx.concatenate(
[u_values, nx.reshape(u_values[:, 0], (-1, 1)) + 1], axis=1
)
if nx.__name__ == "torch":
# this is to ensure the best performance for torch searchsorted
# and avoid a warning related to non-contiguous arrays
u_cdfm = u_cdfm.contiguous()
v_cdf_theta = v_cdf_theta.contiguous()
u_indexm = nx.searchsorted(u_cdfm, v_cdf_theta, side="right")
u_icdfm_theta = nx.take_along_axis(u_valuesm, nx.clip(u_indexm, 0, n), -1)
dCp = nx.sum(
nx.power(nx.abs(u_icdf_theta - v_values[:, 1:]), p)
- nx.power(nx.abs(u_icdf_theta - v_values[:, :-1]), p),
axis=-1,
)
dCm = nx.sum(
nx.power(nx.abs(u_icdfm_theta - v_values[:, 1:]), p)
- nx.power(nx.abs(u_icdfm_theta - v_values[:, :-1]), p),
axis=-1,
)
return dCp.reshape(-1, 1), dCm.reshape(-1, 1)
def ot_cost_on_circle(theta, u_values, v_values, u_cdf, v_cdf, p):
r"""Computes the the cost (Equation (6.2) of [1])
Parameters
----------
theta: array-like, shape (n_batch, n)
Cuts on the circle
u_values: array-like, shape (n_batch, n)
locations of the first empirical distribution
v_values: array-like, shape (n_batch, n)
locations of the second empirical distribution
u_cdf: array-like, shape (n_batch, n)
cdf of the first empirical distribution
v_cdf: array-like, shape (n_batch, n)
cdf of the second empirical distribution
p: float, optional = 2
Power p used for computing the Wasserstein distance
Returns
-------
ot_cost: array-like, shape (n_batch,)
OT cost evaluated at theta
References
---------
.. [44] Delon, Julie, Julien Salomon, and Andrei Sobolevski. "Fast transport optimization for Monge costs on the circle." SIAM Journal on Applied Mathematics 70.7 (2010): 2239-2258.
"""
nx = get_backend(theta, u_values, v_values, u_cdf, v_cdf)
v_values = nx.copy(v_values)
m_batch, m = v_values.shape
n_batch, n = u_values.shape
v_cdf_theta = v_cdf - (theta - nx.floor(theta))
mask_p = v_cdf_theta >= 0
mask_n = v_cdf_theta < 0
v_values[mask_n] += nx.floor(theta)[mask_n] + 1
v_values[mask_p] += nx.floor(theta)[mask_p]
if nx.any(mask_n) and nx.any(mask_p):
v_cdf_theta[mask_n] += 1
# Put negative values at the end
v_cdf_theta2 = nx.copy(v_cdf_theta)
v_cdf_theta2[mask_n] = np.inf
shift = -nx.argmin(v_cdf_theta2, axis=-1)
v_cdf_theta = roll_cols(v_cdf_theta, nx.reshape(shift, (-1, 1)))
v_values = roll_cols(v_values, nx.reshape(shift, (-1, 1)))
v_values = nx.concatenate(
[v_values, nx.reshape(v_values[:, 0], (-1, 1)) + 1], axis=1
)
# Compute absciss
cdf_axis = nx.sort(nx.concatenate((u_cdf, v_cdf_theta), -1), -1)
cdf_axis_pad = nx.zero_pad(cdf_axis, pad_width=[(0, 0), (1, 0)])
delta = cdf_axis_pad[..., 1:] - cdf_axis_pad[..., :-1]
if nx.__name__ == "torch":
# this is to ensure the best performance for torch searchsorted
# and avoid a warning related to non-contiguous arrays
u_cdf = u_cdf.contiguous()
v_cdf_theta = v_cdf_theta.contiguous()
cdf_axis = cdf_axis.contiguous()
# Compute icdf
u_index = nx.searchsorted(u_cdf, cdf_axis)
u_icdf = nx.take_along_axis(u_values, u_index.clip(0, n - 1), -1)
v_values = nx.concatenate(
[v_values, nx.reshape(v_values[:, 0], (-1, 1)) + 1], axis=1
)
v_index = nx.searchsorted(v_cdf_theta, cdf_axis)
v_icdf = nx.take_along_axis(v_values, v_index.clip(0, m), -1)
if p == 1:
ot_cost = nx.sum(delta * nx.abs(u_icdf - v_icdf), axis=-1)
else:
ot_cost = nx.sum(delta * nx.power(nx.abs(u_icdf - v_icdf), p), axis=-1)
return ot_cost
def binary_search_circle(
u_values,
v_values,
u_weights=None,
v_weights=None,
p=1,
Lm=10,
Lp=10,
tm=-1,
tp=1,
eps=1e-6,
require_sort=True,
log=False,
):
r"""Computes the Wasserstein distance on the circle using the Binary search algorithm proposed in [44].
Samples need to be in :math:`S^1\cong [0,1[`. If they are on :math:`\mathbb{R}`,
takes the value modulo 1.
If the values are on :math:`S^1\subset\mathbb{R}^2`, it is required to first find the coordinates
using e.g. the atan2 function.
.. math::
W_p^p(u,v) = \inf_{\theta\in\mathbb{R}}\int_0^1 |F_u^{-1}(q) - (F_v-\theta)^{-1}(q)|^p\ \mathrm{d}q
where:
- :math:`F_u` and :math:`F_v` are respectively the cdfs of :math:`u` and :math:`v`
For values :math:`x=(x_1,x_2)\in S^1`, it is required to first get their coordinates with
.. math::
u = \frac{\pi + \mathrm{atan2}(-x_2,-x_1)}{2\pi}
using e.g. ot.utils.get_coordinate_circle(x)
The function runs on backend but tensorflow and jax are not supported.
Parameters
----------
u_values : ndarray, shape (n, ...)
samples in the source domain (coordinates on [0,1[)
v_values : ndarray, shape (n, ...)
samples in the target domain (coordinates on [0,1[)
u_weights : ndarray, shape (n, ...), optional
samples weights in the source domain
v_weights : ndarray, shape (n, ...), optional
samples weights in the target domain
p : float, optional (default=1)
Power p used for computing the Wasserstein distance
Lm : int, optional
Lower bound dC
Lp : int, optional
Upper bound dC
tm: float, optional
Lower bound theta
tp: float, optional
Upper bound theta
eps: float, optional
Stopping condition
require_sort: bool, optional
If True, sort the values.
log: bool, optional
If True, returns also the optimal theta
Returns
-------
loss: float
Cost associated to the optimal transportation
log: dict, optional
log dictionary returned only if log==True in parameters
Examples
--------
>>> u = np.array([[0.2,0.5,0.8]])%1
>>> v = np.array([[0.4,0.5,0.7]])%1
>>> binary_search_circle(u.T, v.T, p=1)
array([0.1])
References
----------
.. [44] Delon, Julie, Julien Salomon, and Andrei Sobolevski. "Fast transport optimization for Monge costs on the circle." SIAM Journal on Applied Mathematics 70.7 (2010): 2239-2258.
.. Matlab Code: https://users.mccme.ru/ansobol/otarie/software.html
"""
assert p >= 1, "The OT loss is only valid for p>=1, {p} was given".format(p=p)
if u_weights is not None and v_weights is not None:
nx = get_backend(u_values, v_values, u_weights, v_weights)
else:
nx = get_backend(u_values, v_values)
n = u_values.shape[0]
m = v_values.shape[0]
if len(u_values.shape) == 1:
u_values = nx.reshape(u_values, (n, 1))
if len(v_values.shape) == 1:
v_values = nx.reshape(v_values, (m, 1))
if u_values.shape[1] != v_values.shape[1]:
raise ValueError(
"u and v must have the same number of batches {} and {} respectively given".format(
u_values.shape[1], v_values.shape[1]
)
)
u_values = u_values % 1
v_values = v_values % 1
if u_weights is None:
u_weights = nx.full(u_values.shape, 1.0 / n, type_as=u_values)
elif u_weights.ndim != u_values.ndim:
u_weights = nx.repeat(u_weights[..., None], u_values.shape[-1], -1)
if v_weights is None:
v_weights = nx.full(v_values.shape, 1.0 / m, type_as=v_values)
elif v_weights.ndim != v_values.ndim:
v_weights = nx.repeat(v_weights[..., None], v_values.shape[-1], -1)
if require_sort:
u_sorter = nx.argsort(u_values, 0)
u_values = nx.take_along_axis(u_values, u_sorter, 0)
v_sorter = nx.argsort(v_values, 0)
v_values = nx.take_along_axis(v_values, v_sorter, 0)
u_weights = nx.take_along_axis(u_weights, u_sorter, 0)
v_weights = nx.take_along_axis(v_weights, v_sorter, 0)
u_cdf = nx.cumsum(u_weights, 0).T
v_cdf = nx.cumsum(v_weights, 0).T
u_values = u_values.T
v_values = v_values.T
L = max(Lm, Lp)
tm = tm * nx.reshape(nx.ones((u_values.shape[0],), type_as=u_values), (-1, 1))
tm = nx.tile(tm, (1, m))
tp = tp * nx.reshape(nx.ones((u_values.shape[0],), type_as=u_values), (-1, 1))
tp = nx.tile(tp, (1, m))
tc = (tm + tp) / 2
done = nx.zeros((u_values.shape[0], m))
cpt = 0
while nx.any(1 - done):
cpt += 1
dCp, dCm = derivative_cost_on_circle(tc, u_values, v_values, u_cdf, v_cdf, p)
done = ((dCp * dCm) <= 0) * 1
mask = ((tp - tm) < eps / L) * (1 - done)
if nx.any(mask):
# can probably be improved by computing only relevant values
dCptp, dCmtp = derivative_cost_on_circle(
tp, u_values, v_values, u_cdf, v_cdf, p
)
dCptm, dCmtm = derivative_cost_on_circle(
tm, u_values, v_values, u_cdf, v_cdf, p
)
Ctm = ot_cost_on_circle(tm, u_values, v_values, u_cdf, v_cdf, p).reshape(
-1, 1
)
Ctp = ot_cost_on_circle(tp, u_values, v_values, u_cdf, v_cdf, p).reshape(
-1, 1
)
mask_end = mask * (nx.abs(dCptm - dCmtp) > 0.001)
tc[mask_end > 0] = (
(Ctp - Ctm + tm * dCptm - tp * dCmtp) / (dCptm - dCmtp)
)[mask_end > 0]
done[nx.prod(mask, axis=-1) > 0] = 1
elif nx.any(1 - done):
tm[((1 - mask) * (dCp < 0)) > 0] = tc[((1 - mask) * (dCp < 0)) > 0]
tp[((1 - mask) * (dCp >= 0)) > 0] = tc[((1 - mask) * (dCp >= 0)) > 0]
tc[((1 - mask) * (1 - done)) > 0] = (
tm[((1 - mask) * (1 - done)) > 0] + tp[((1 - mask) * (1 - done)) > 0]
) / 2
w = ot_cost_on_circle(nx.detach(tc), u_values, v_values, u_cdf, v_cdf, p)
if log:
return w, {"optimal_theta": tc[:, 0]}
return w
def wasserstein1_circle(
u_values, v_values, u_weights=None, v_weights=None, require_sort=True
):
r"""Computes the 1-Wasserstein distance on the circle using the level median [45].
Samples need to be in :math:`S^1\cong [0,1[`. If they are on :math:`\mathbb{R}`,
takes the value modulo 1.
If the values are on :math:`S^1\subset\mathbb{R}^2`, first find the coordinates
using e.g. the atan2 function.
The function runs on backend but tensorflow and jax are not supported.
.. math::
W_1(u,v) = \int_0^1 |F_u(t)-F_v(t)-LevMed(F_u-F_v)|\ \mathrm{d}t
Parameters
----------
u_values : ndarray, shape (n, ...)
samples in the source domain (coordinates on [0,1[)
v_values : ndarray, shape (n, ...)
samples in the target domain (coordinates on [0,1[)
u_weights : ndarray, shape (n, ...), optional
samples weights in the source domain
v_weights : ndarray, shape (n, ...), optional
samples weights in the target domain
require_sort: bool, optional
If True, sort the values.
Returns
-------
loss: float
Cost associated to the optimal transportation
Examples
--------
>>> u = np.array([[0.2,0.5,0.8]])%1
>>> v = np.array([[0.4,0.5,0.7]])%1
>>> wasserstein1_circle(u.T, v.T)
array([0.1])
References
----------
.. [45] Hundrieser, Shayan, Marcel Klatt, and Axel Munk. "The statistics of circular optimal transport." Directional Statistics for Innovative Applications: A Bicentennial Tribute to Florence Nightingale. Singapore: Springer Nature Singapore, 2022. 57-82.
.. Code R: https://gitlab.gwdg.de/shundri/circularOT/-/tree/master/
"""
if u_weights is not None and v_weights is not None:
nx = get_backend(u_values, v_values, u_weights, v_weights)
else:
nx = get_backend(u_values, v_values)
n = u_values.shape[0]
m = v_values.shape[0]
if len(u_values.shape) == 1:
u_values = nx.reshape(u_values, (n, 1))
if len(v_values.shape) == 1:
v_values = nx.reshape(v_values, (m, 1))
if u_values.shape[1] != v_values.shape[1]:
raise ValueError(
"u and v must have the same number of batchs {} and {} respectively given".format(
u_values.shape[1], v_values.shape[1]
)
)
u_values = u_values % 1
v_values = v_values % 1
if u_weights is None:
u_weights = nx.full(u_values.shape, 1.0 / n, type_as=u_values)
elif u_weights.ndim != u_values.ndim:
u_weights = nx.repeat(u_weights[..., None], u_values.shape[-1], -1)
if v_weights is None:
v_weights = nx.full(v_values.shape, 1.0 / m, type_as=v_values)
elif v_weights.ndim != v_values.ndim:
v_weights = nx.repeat(v_weights[..., None], v_values.shape[-1], -1)
if require_sort:
u_sorter = nx.argsort(u_values, 0)
u_values = nx.take_along_axis(u_values, u_sorter, 0)
v_sorter = nx.argsort(v_values, 0)
v_values = nx.take_along_axis(v_values, v_sorter, 0)
u_weights = nx.take_along_axis(u_weights, u_sorter, 0)
v_weights = nx.take_along_axis(v_weights, v_sorter, 0)
# Code inspired from https://gitlab.gwdg.de/shundri/circularOT/-/tree/master/
values_sorted, values_sorter = nx.sort2(nx.concatenate((u_values, v_values), 0), 0)
cdf_diff = nx.cumsum(
nx.take_along_axis(
nx.concatenate((u_weights, -v_weights), 0), values_sorter, 0
),
0,
)
cdf_diff_sorted, cdf_diff_sorter = nx.sort2(cdf_diff, axis=0)
values_sorted = nx.zero_pad(values_sorted, pad_width=[(0, 1), (0, 0)], value=1)
delta = values_sorted[1:, ...] - values_sorted[:-1, ...]
weight_sorted = nx.take_along_axis(delta, cdf_diff_sorter, 0)
sum_weights = nx.cumsum(weight_sorted, axis=0) - 0.5
sum_weights[sum_weights < 0] = np.inf
inds = nx.argmin(sum_weights, axis=0)
levMed = nx.take_along_axis(cdf_diff_sorted, nx.reshape(inds, (1, -1)), 0)
return nx.sum(delta * nx.abs(cdf_diff - levMed), axis=0)
def wasserstein_circle(
u_values,
v_values,
u_weights=None,
v_weights=None,
p=1,
Lm=10,
Lp=10,
tm=-1,
tp=1,
eps=1e-6,
require_sort=True,
):
r"""Computes the Wasserstein distance on the circle using either [45] for p=1 or
the binary search algorithm proposed in [44] otherwise.
Samples need to be in :math:`S^1\cong [0,1[`. If they are on :math:`\mathbb{R}`,
takes the value modulo 1.
If the values are on :math:`S^1\subset\mathbb{R}^2`, it requires to first find the coordinates
using e.g. the atan2 function.
General loss returned:
.. math::
OT_{loss} = \inf_{\theta\in\mathbb{R}}\int_0^1 |cdf_u^{-1}(q) - (cdf_v-\theta)^{-1}(q)|^p\ \mathrm{d}q
For p=1, [45]
.. math::
W_1(u,v) = \int_0^1 |F_u(t)-F_v(t)-LevMed(F_u-F_v)|\ \mathrm{d}t
For values :math:`x=(x_1,x_2)\in S^1`, it is required to first get their coordinates with
.. math::
u = \frac{\pi + \mathrm{atan2}(-x_2,-x_1)}{2\pi}
using e.g. ot.utils.get_coordinate_circle(x)
The function runs on backend but tensorflow and jax are not supported.
Parameters
----------
u_values : ndarray, shape (n, ...)
samples in the source domain (coordinates on [0,1[)
v_values : ndarray, shape (n, ...)
samples in the target domain (coordinates on [0,1[)
u_weights : ndarray, shape (n, ...), optional
samples weights in the source domain
v_weights : ndarray, shape (n, ...), optional
samples weights in the target domain
p : float, optional (default=1)
Power p used for computing the Wasserstein distance
Lm : int, optional
Lower bound dC. For p>1.
Lp : int, optional
Upper bound dC. For p>1.
tm: float, optional
Lower bound theta. For p>1.
tp: float, optional
Upper bound theta. For p>1.
eps: float, optional
Stopping condition. For p>1.
require_sort: bool, optional
If True, sort the values.
Returns
-------
loss: float
Cost associated to the optimal transportation
Examples
--------
>>> u = np.array([[0.2,0.5,0.8]])%1
>>> v = np.array([[0.4,0.5,0.7]])%1
>>> wasserstein_circle(u.T, v.T)
array([0.1])
References
----------
.. [44] Hundrieser, Shayan, Marcel Klatt, and Axel Munk. "The statistics of circular optimal transport." Directional Statistics for Innovative Applications: A Bicentennial Tribute to Florence Nightingale. Singapore: Springer Nature Singapore, 2022. 57-82.
.. [45] Delon, Julie, Julien Salomon, and Andrei Sobolevski. "Fast transport optimization for Monge costs on the circle." SIAM Journal on Applied Mathematics 70.7 (2010): 2239-2258.
"""
assert p >= 1, "The OT loss is only valid for p>=1, {p} was given".format(p=p)
if p == 1:
return wasserstein1_circle(
u_values, v_values, u_weights, v_weights, require_sort
)
return binary_search_circle(
u_values,
v_values,
u_weights,
v_weights,
p=p,
Lm=Lm,
Lp=Lp,
tm=tm,
tp=tp,
eps=eps,
require_sort=require_sort,
)
def semidiscrete_wasserstein2_unif_circle(u_values, u_weights=None):
r"""Computes the closed-form for the 2-Wasserstein distance between samples and a uniform distribution on :math:`S^1`
Samples need to be in :math:`S^1\cong [0,1[`. If they are on :math:`\mathbb{R}`,
takes the value modulo 1.
If the values are on :math:`S^1\subset\mathbb{R}^2`, it is required to first find the coordinates
using e.g. the atan2 function.
.. math::
W_2^2(\mu_n, \nu) = \sum_{i=1}^n \alpha_i x_i^2 - \left(\sum_{i=1}^n \alpha_i x_i\right)^2 + \sum_{i=1}^n \alpha_i x_i \left(1-\alpha_i-2\sum_{k=1}^{i-1}\alpha_k\right) + \frac{1}{12}
where:
- :math:`\nu=\mathrm{Unif}(S^1)` and :math:`\mu_n = \sum_{i=1}^n \alpha_i \delta_{x_i}`
For values :math:`x=(x_1,x_2)\in S^1`, it is required to first get their coordinates with
.. math::
u = \frac{\pi + \mathrm{atan2}(-x_2,-x_1)}{2\pi},
using e.g. ot.utils.get_coordinate_circle(x)
Parameters
----------
u_values: ndarray, shape (n, ...)
Samples
u_weights : ndarray, shape (n, ...), optional
samples weights in the source domain
Returns
-------
loss: float
Cost associated to the optimal transportation
Examples
--------
>>> x0 = np.array([[0], [0.2], [0.4]])
>>> semidiscrete_wasserstein2_unif_circle(x0)
array([0.02111111])
References
----------
.. [46] Bonet, C., Berg, P., Courty, N., Septier, F., Drumetz, L., & Pham, M. T. (2023). Spherical sliced-wasserstein. International Conference on Learning Representations.
"""
if u_weights is not None:
nx = get_backend(u_values, u_weights)
else:
nx = get_backend(u_values)
n = u_values.shape[0]
u_values = u_values % 1
if len(u_values.shape) == 1:
u_values = nx.reshape(u_values, (n, 1))
if u_weights is None:
u_weights = nx.full(u_values.shape, 1.0 / n, type_as=u_values)
elif u_weights.ndim != u_values.ndim:
u_weights = nx.repeat(u_weights[..., None], u_values.shape[-1], -1)
u_values = nx.sort(u_values, 0)
u_cdf = nx.cumsum(u_weights, 0)
u_cdf = nx.zero_pad(u_cdf, [(1, 0), (0, 0)])
cpt1 = nx.sum(u_weights * u_values**2, axis=0)
u_mean = nx.sum(u_weights * u_values, axis=0)
ns = 1 - u_weights - 2 * u_cdf[:-1]
cpt2 = nx.sum(u_values * u_weights * ns, axis=0)
return cpt1 - u_mean**2 + cpt2 + 1 / 12
|