1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
# -*- coding: utf-8 -*-
"""
Regularized Unbalanced OT solvers
"""
# Author: Hicham Janati <hicham.janati@inria.fr>
# Laetitia Chapel <laetitia.chapel@univ-ubs.fr>
# Quang Huy Tran <quang-huy.tran@univ-ubs.fr>
#
# License: MIT License
import warnings
import numpy as np
from scipy.optimize import minimize, Bounds
from ..backend import get_backend
from ..utils import list_to_array, get_parameter_pair
def _get_loss_unbalanced(a, b, c, M, reg, reg_m1, reg_m2, reg_div="kl", regm_div="kl"):
"""
Return loss function for the L-BFGS-B solver
.. note:: This function will be fed into scipy.optimize, so all input arrays must be Numpy arrays.
Parameters
----------
a : array-like (dim_a,)
Unnormalized histogram of dimension `dim_a`
b : array-like (dim_b,)
Unnormalized histogram of dimension `dim_b`
M : array-like (dim_a, dim_b)
loss matrix
reg: float
regularization term >=0
c : array-like (dim_a, dim_b), optional (default = None)
Reference measure for the regularization.
If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`.
reg_m1: float
Marginal relaxation term with respect to the first marginal:
nonnegative (including 0) but cannot be infinity.
reg_m2: float
Marginal relaxation term with respect to the second marginal:
nonnegative (including 0) but cannot be infinity.
reg_div: string, optional
Divergence used for regularization.
Can take three values: 'entropy' (negative entropy), or
'kl' (Kullback-Leibler) or 'l2' (half-squared) or a tuple
of two calable functions returning the reg term and its derivative.
Note that the callable functions should be able to handle Numpy arrays
and not tesors from the backend
regm_div: string, optional
Divergence to quantify the difference between the marginals.
Can take three values: 'kl' (Kullback-Leibler) or 'l2' (half-squared) or 'tv' (Total Variation)
Returns
-------
Loss function (scipy.optimize compatible) for regularized unbalanced OT
"""
m, n = M.shape
nx_numpy = get_backend(M, a, b)
def reg_l2(G):
return np.sum((G - c) ** 2) / 2
def grad_l2(G):
return G - c
def reg_kl(G):
return nx_numpy.kl_div(G, c, mass=True)
def grad_kl(G):
return np.log(G / c + 1e-16)
def reg_entropy(G):
return np.sum(G * np.log(G + 1e-16)) - np.sum(G)
def grad_entropy(G):
return np.log(G + 1e-16)
if reg_div == "kl":
reg_fun = reg_kl
grad_reg_fun = grad_kl
elif reg_div == "entropy":
reg_fun = reg_entropy
grad_reg_fun = grad_entropy
elif isinstance(reg_div, tuple):
reg_fun = reg_div[0]
grad_reg_fun = reg_div[1]
else:
reg_fun = reg_l2
grad_reg_fun = grad_l2
def marg_l2(G):
return reg_m1 * 0.5 * np.sum((G.sum(1) - a) ** 2) + reg_m2 * 0.5 * np.sum(
(G.sum(0) - b) ** 2
)
def grad_marg_l2(G):
return reg_m1 * np.outer((G.sum(1) - a), np.ones(n)) + reg_m2 * np.outer(
np.ones(m), (G.sum(0) - b)
)
def marg_kl(G):
return reg_m1 * nx_numpy.kl_div(
G.sum(1), a, mass=True
) + reg_m2 * nx_numpy.kl_div(G.sum(0), b, mass=True)
def grad_marg_kl(G):
return reg_m1 * np.outer(
np.log(G.sum(1) / a + 1e-16), np.ones(n)
) + reg_m2 * np.outer(np.ones(m), np.log(G.sum(0) / b + 1e-16))
def marg_tv(G):
return reg_m1 * np.sum(np.abs(G.sum(1) - a)) + reg_m2 * np.sum(
np.abs(G.sum(0) - b)
)
def grad_marg_tv(G):
return reg_m1 * np.outer(np.sign(G.sum(1) - a), np.ones(n)) + reg_m2 * np.outer(
np.ones(m), np.sign(G.sum(0) - b)
)
if regm_div == "kl":
regm_fun = marg_kl
grad_regm_fun = grad_marg_kl
elif regm_div == "tv":
regm_fun = marg_tv
grad_regm_fun = grad_marg_tv
else:
regm_fun = marg_l2
grad_regm_fun = grad_marg_l2
def _func(G):
G = G.reshape((m, n))
# compute loss
val = np.sum(G * M) + regm_fun(G)
if reg > 0:
val = val + reg * reg_fun(G)
# compute gradient
grad = M + grad_regm_fun(G)
if reg > 0:
grad = grad + reg * grad_reg_fun(G)
return val, grad.ravel()
return _func
def lbfgsb_unbalanced(
a,
b,
M,
reg,
reg_m,
c=None,
reg_div="kl",
regm_div="kl",
G0=None,
numItermax=1000,
stopThr=1e-15,
method="L-BFGS-B",
verbose=False,
log=False,
):
r"""
Solve the unbalanced optimal transport problem and return the OT plan using L-BFGS-B algorithm.
The function solves the following optimization problem:
.. math::
W = \arg \min_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
\mathrm{reg} \mathrm{div}(\gamma, \mathbf{c}) +
\mathrm{reg_{m1}} \cdot \mathrm{div_m}(\gamma \mathbf{1}, \mathbf{a}) +
\mathrm{reg_{m2}} \cdot \mathrm{div_m}(\gamma^T \mathbf{1}, \mathbf{b})
s.t.
\gamma \geq 0
where:
- :math:`\mathbf{M}` is the (`dim_a`, `dim_b`) metric cost matrix
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target unbalanced distributions
- :math:`\mathbf{c}` is a reference distribution for the regularization
- :math:`\mathrm{div_m}` is a divergence, either Kullback-Leibler divergence,
or half-squared :math:`\ell_2` divergence, or Total variation
- :math:`\mathrm{div}` is a divergence, either Kullback-Leibler divergence,
or half-squared :math:`\ell_2` divergence
.. note:: This function is backend-compatible and will work on arrays
from all compatible backends. First, it converts all arrays into Numpy arrays,
then uses the L-BFGS-B algorithm from scipy.optimize to solve the optimization problem.
Parameters
----------
a : array-like (dim_a,)
Unnormalized histogram of dimension `dim_a`
If `a` is an empty list or array ([]),
then `a` is set to uniform distribution.
b : array-like (dim_b,)
Unnormalized histogram of dimension `dim_b`
If `b` is an empty list or array ([]),
then `b` is set to uniform distribution.
M : array-like (dim_a, dim_b)
loss matrix
reg: float
regularization term >=0
c : array-like (dim_a, dim_b), optional (default = None)
Reference measure for the regularization.
If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`.
reg_m: float or indexable object of length 1 or 2
Marginal relaxation term: nonnegative (including 0) but cannot be infinity.
If :math:`\mathrm{reg_{m}}` is a scalar or an indexable object of length 1,
then the same :math:`\mathrm{reg_{m}}` is applied to both marginal relaxations.
If :math:`\mathrm{reg_{m}}` is an array, it must be a Numpy array.
reg_div: string, optional
Divergence used for regularization.
Can take three values: 'entropy' (negative entropy), or
'kl' (Kullback-Leibler) or 'l2' (half-squared) or a tuple
of two calable functions returning the reg term and its derivative.
Note that the callable functions should be able to handle Numpy arrays
and not tesors from the backend
regm_div: string, optional
Divergence to quantify the difference between the marginals.
Can take three values: 'kl' (Kullback-Leibler) or 'l2' (half-squared) or 'tv' (Total Variation)
G0: array-like (dim_a, dim_b)
Initialization of the transport matrix
numItermax : int, optional
Max number of iterations
stopThr : float, optional
Stop threshold on error (> 0)
verbose : bool, optional
Print information along iterations
log : bool, optional
record log if True
Returns
-------
gamma : (dim_a, dim_b) array-like
Optimal transportation matrix for the given parameters
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> import numpy as np
>>> a=[.5, .5]
>>> b=[.5, .5]
>>> M=[[1., 36.],[9., 4.]]
>>> np.round(ot.unbalanced.lbfgsb_unbalanced(a, b, M, reg=0, reg_m=5, reg_div='kl', regm_div='kl'), 2)
array([[0.45, 0. ],
[0. , 0.34]])
>>> np.round(ot.unbalanced.lbfgsb_unbalanced(a, b, M, reg=0, reg_m=5, reg_div='l2', regm_div='l2'), 2)
array([[0.4, 0. ],
[0. , 0.1]])
References
----------
.. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
Unbalanced optimal transport through non-negative penalized
linear regression. NeurIPS.
See Also
--------
ot.lp.emd2 : Unregularized OT loss
ot.unbalanced.sinkhorn_unbalanced2 : Entropic regularized OT loss
"""
# wrap the callable function to handle numpy arrays
if isinstance(reg_div, tuple):
f0, df0 = reg_div
try:
f0(G0)
df0(G0)
except BaseException:
warnings.warn(
"The callable functions should be able to handle numpy arrays, wrapper ar added to handle this which comes with overhead"
)
def f(x):
return nx.to_numpy(f0(nx.from_numpy(x, type_as=M0)))
def df(x):
return nx.to_numpy(df0(nx.from_numpy(x, type_as=M0)))
reg_div = (f, df)
else:
reg_div = reg_div.lower()
if reg_div not in ["entropy", "kl", "l2"]:
raise ValueError(
"Unknown reg_div = {}. Must be either 'entropy', 'kl' or 'l2', or a tuple".format(
reg_div
)
)
regm_div = regm_div.lower()
if regm_div not in ["kl", "l2", "tv"]:
raise ValueError(
"Unknown regm_div = {}. Must be either 'kl', 'l2' or 'tv'".format(regm_div)
)
reg_m1, reg_m2 = get_parameter_pair(reg_m)
M, a, b = list_to_array(M, a, b)
nx = get_backend(M, a, b)
M0 = M
dim_a, dim_b = M.shape
if len(a) == 0:
a = nx.ones(dim_a, type_as=M) / dim_a
if len(b) == 0:
b = nx.ones(dim_b, type_as=M) / dim_b
# convert to numpy
a, b, M, reg_m1, reg_m2, reg = nx.to_numpy(a, b, M, reg_m1, reg_m2, reg)
G0 = a[:, None] * b[None, :] if G0 is None else nx.to_numpy(G0)
c = a[:, None] * b[None, :] if c is None else nx.to_numpy(c)
_func = _get_loss_unbalanced(a, b, c, M, reg, reg_m1, reg_m2, reg_div, regm_div)
res = minimize(
_func,
G0.ravel(),
method=method,
jac=True,
bounds=Bounds(0, np.inf),
tol=stopThr,
options=dict(maxiter=numItermax, disp=verbose),
)
G = nx.from_numpy(res.x.reshape(M.shape), type_as=M0)
if log:
log = {"cost": nx.sum(G * M), "res": res}
log["total_cost"] = nx.from_numpy(res.fun, type_as=M0)
return G, log
else:
return G
def lbfgsb_unbalanced2(
a,
b,
M,
reg,
reg_m,
c=None,
reg_div="kl",
regm_div="kl",
G0=None,
returnCost="linear",
numItermax=1000,
stopThr=1e-15,
method="L-BFGS-B",
verbose=False,
log=False,
):
r"""
Solve the unbalanced optimal transport problem and return the OT cost using L-BFGS-B.
The function solves the following optimization problem:
.. math::
\min_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F +
\mathrm{reg} \mathrm{div}(\gamma, \mathbf{c}) +
\mathrm{reg_{m1}} \cdot \mathrm{div_m}(\gamma \mathbf{1}, \mathbf{a}) +
\mathrm{reg_{m2}} \cdot \mathrm{div_m}(\gamma^T \mathbf{1}, \mathbf{b})
s.t.
\gamma \geq 0
where:
- :math:`\mathbf{M}` is the (`dim_a`, `dim_b`) metric cost matrix
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target unbalanced distributions
- :math:`\mathbf{c}` is a reference distribution for the regularization
- :math:`\mathrm{div_m}` is a divergence, either Kullback-Leibler divergence,
or half-squared :math:`\ell_2` divergence, or Total variation
- :math:`\mathrm{div}` is a divergence, either Kullback-Leibler divergence,
or half-squared :math:`\ell_2` divergence
.. note:: This function is backend-compatible and will work on arrays
from all compatible backends. First, it converts all arrays into Numpy arrays,
then uses the L-BFGS-B algorithm from scipy.optimize to solve the optimization problem.
Parameters
----------
a : array-like (dim_a,)
Unnormalized histogram of dimension `dim_a`
If `a` is an empty list or array ([]),
then `a` is set to uniform distribution.
b : array-like (dim_b,)
Unnormalized histogram of dimension `dim_b`
If `b` is an empty list or array ([]),
then `b` is set to uniform distribution.
M : array-like (dim_a, dim_b)
loss matrix
reg: float
regularization term >=0
c : array-like (dim_a, dim_b), optional (default = None)
Reference measure for the regularization.
If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`.
reg_m: float or indexable object of length 1 or 2
Marginal relaxation term: nonnegative (including 0) but cannot be infinity.
If :math:`\mathrm{reg_{m}}` is a scalar or an indexable object of length 1,
then the same :math:`\mathrm{reg_{m}}` is applied to both marginal relaxations.
If :math:`\mathrm{reg_{m}}` is an array, it must be a Numpy array.
reg_div: string, optional
Divergence used for regularization.
Can take three values: 'entropy' (negative entropy), or
'kl' (Kullback-Leibler) or 'l2' (half-squared) or a tuple
of two calable functions returning the reg term and its derivative.
Note that the callable functions should be able to handle Numpy arrays
and not tesors from the backend
regm_div: string, optional
Divergence to quantify the difference between the marginals.
Can take three values: 'kl' (Kullback-Leibler) or 'l2' (half-squared) or 'tv' (Total Variation)
G0: array-like (dim_a, dim_b)
Initialization of the transport matrix
returnCost: string, optional (default = "linear")
If `returnCost` = "linear", then return the linear part of the unbalanced OT loss.
If `returnCost` = "total", then return the total unbalanced OT loss.
numItermax : int, optional
Max number of iterations
stopThr : float, optional
Stop threshold on error (> 0)
verbose : bool, optional
Print information along iterations
log : bool, optional
record log if True
Returns
-------
ot_cost : array-like
the OT cost between :math:`\mathbf{a}` and :math:`\mathbf{b}`
log : dict
log dictionary returned only if `log` is `True`
Examples
--------
>>> import ot
>>> import numpy as np
>>> a=[.5, .5]
>>> b=[.5, .5]
>>> M=[[1., 36.],[9., 4.]]
>>> np.round(ot.unbalanced.lbfgsb_unbalanced2(a, b, M, reg=0, reg_m=5, reg_div='kl', regm_div='kl'), 2)
1.79
>>> np.round(ot.unbalanced.lbfgsb_unbalanced2(a, b, M, reg=0, reg_m=5, reg_div='l2', regm_div='l2'), 2)
0.8
References
----------
.. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021).
Unbalanced optimal transport through non-negative penalized
linear regression. NeurIPS.
See Also
--------
ot.lp.emd2 : Unregularized OT loss
ot.unbalanced.sinkhorn_unbalanced2 : Entropic regularized OT loss
"""
_, log_lbfgs = lbfgsb_unbalanced(
a=a,
b=b,
M=M,
reg=reg,
reg_m=reg_m,
c=c,
reg_div=reg_div,
regm_div=regm_div,
G0=G0,
numItermax=numItermax,
stopThr=stopThr,
method=method,
verbose=verbose,
log=True,
)
if returnCost == "linear":
cost = log_lbfgs["cost"]
elif returnCost == "total":
cost = log_lbfgs["total_cost"]
else:
raise ValueError("Unknown returnCost = {}".format(returnCost))
if log:
return cost, log_lbfgs
else:
return cost
|