1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
"""Tests for gromov._estimators.py"""
# Author: Rémi Flamary <remi.flamary@unice.fr>
# Tanguy Kerdoncuff <tanguy.kerdoncuff@laposte.net>
# Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
#
# License: MIT License
import numpy as np
import pytest
import ot
from ot.backend import NumpyBackend
def test_pointwise_gromov(nx):
n_samples = 5 # nb samples
mu_s = np.array([0, 0])
cov_s = np.array([[1, 0], [0, 1]])
xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=42)
xt = xs[::-1].copy()
p = ot.unif(n_samples)
q = ot.unif(n_samples)
C1 = ot.dist(xs, xs)
C2 = ot.dist(xt, xt)
C1 /= C1.max()
C2 /= C2.max()
C1b, C2b, pb, qb = nx.from_numpy(C1, C2, p, q)
def loss(x, y):
return np.abs(x - y)
def lossb(x, y):
return nx.abs(x - y)
G, log = ot.gromov.pointwise_gromov_wasserstein(
C1, C2, p, q, loss, max_iter=100, log=True, verbose=True, random_state=42
)
G = NumpyBackend().todense(G)
Gb, logb = ot.gromov.pointwise_gromov_wasserstein(
C1b, C2b, pb, qb, lossb, max_iter=100, log=True, verbose=True, random_state=42
)
Gb = nx.to_numpy(nx.todense(Gb))
# check constraints
np.testing.assert_allclose(G, Gb, atol=1e-06)
np.testing.assert_allclose(p, Gb.sum(1), atol=1e-04) # cf convergence gromov
np.testing.assert_allclose(q, Gb.sum(0), atol=1e-04) # cf convergence gromov
np.testing.assert_allclose(float(logb["gw_dist_estimated"]), 0.0, atol=1e-08)
np.testing.assert_allclose(float(logb["gw_dist_std"]), 0.0, atol=1e-08)
G, log = ot.gromov.pointwise_gromov_wasserstein(
C1,
C2,
p,
q,
loss,
max_iter=100,
alpha=0.1,
log=True,
verbose=True,
random_state=42,
)
G = NumpyBackend().todense(G)
Gb, logb = ot.gromov.pointwise_gromov_wasserstein(
C1b,
C2b,
pb,
qb,
lossb,
max_iter=100,
alpha=0.1,
log=True,
verbose=True,
random_state=42,
)
Gb = nx.to_numpy(nx.todense(Gb))
np.testing.assert_allclose(G, Gb, atol=1e-06)
@pytest.skip_backend("tf", reason="test very slow with tf backend")
@pytest.skip_backend("jax", reason="test very slow with jax backend")
def test_sampled_gromov(nx):
n_samples = 5 # nb samples
mu_s = np.array([0, 0], dtype=np.float64)
cov_s = np.array([[1, 0], [0, 1]], dtype=np.float64)
xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=42)
xt = xs[::-1].copy()
p = ot.unif(n_samples)
q = ot.unif(n_samples)
C1 = ot.dist(xs, xs)
C2 = ot.dist(xt, xt)
C1 /= C1.max()
C2 /= C2.max()
C1b, C2b, pb, qb = nx.from_numpy(C1, C2, p, q)
def loss(x, y):
return np.abs(x - y)
def lossb(x, y):
return nx.abs(x - y)
G, log = ot.gromov.sampled_gromov_wasserstein(
C1,
C2,
p,
q,
loss,
max_iter=20,
nb_samples_grad=2,
epsilon=1,
log=True,
verbose=True,
random_state=42,
)
Gb, logb = ot.gromov.sampled_gromov_wasserstein(
C1b,
C2b,
pb,
qb,
lossb,
max_iter=20,
nb_samples_grad=2,
epsilon=1,
log=True,
verbose=True,
random_state=42,
)
Gb = nx.to_numpy(Gb)
# check constraints
np.testing.assert_allclose(G, Gb, atol=1e-06)
np.testing.assert_allclose(p, Gb.sum(1), atol=1e-04) # cf convergence gromov
np.testing.assert_allclose(q, Gb.sum(0), atol=1e-04) # cf convergence gromov
|