File: test_lowrank.py

package info (click to toggle)
python-pot 0.9.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,884 kB
  • sloc: python: 56,498; cpp: 2,310; makefile: 265; sh: 19
file content (151 lines) | stat: -rw-r--r-- 4,606 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""Tests for gromov._lowrank.py"""

# Author: Laurène DAVID <laurene.david@ip-paris.fr>
#
# License: MIT License

import ot
import numpy as np
import pytest


def test__flat_product_operator():
    # test flat product operator
    n, d = 100, 2
    X = np.reshape(1.0 * np.arange(2 * n), (n, d))
    A1, A2 = ot.lowrank.compute_lr_sqeuclidean_matrix(X, X, rescale_cost=False)

    A1_ = ot.gromov._lowrank._flat_product_operator(A1)
    A2_ = ot.gromov._lowrank._flat_product_operator(A2)
    cost = ot.dist(X, X)

    # test value
    np.testing.assert_allclose(cost**2, np.dot(A1_, A2_.T), atol=1e-05)


def test_lowrank_gromov_wasserstein_samples():
    # test low rank gromov wasserstein
    n_samples = 20  # nb samples
    mu_s = np.array([0, 0])
    cov_s = np.array([[1, 0], [0, 1]])

    X_s = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=1)
    X_t = X_s[::-1].copy()

    a = ot.unif(n_samples)
    b = ot.unif(n_samples)

    Q, R, g, log = ot.gromov.lowrank_gromov_wasserstein_samples(
        X_s, X_t, a, b, reg=0.1, log=True, rescale_cost=False
    )
    P = log["lazy_plan"][:]

    # check constraints for P
    np.testing.assert_allclose(a, P.sum(1), atol=1e-04)
    np.testing.assert_allclose(b, P.sum(0), atol=1e-04)

    # check if lazy_plan is equal to the fully computed plan
    P_true = np.dot(Q, np.dot(np.diag(1 / g), R.T))
    np.testing.assert_allclose(P, P_true, atol=1e-05)

    # check warn parameter when low rank GW algorithm doesn't converge
    with pytest.warns(UserWarning):
        ot.gromov.lowrank_gromov_wasserstein_samples(
            X_s,
            X_t,
            a,
            b,
            reg=0.1,
            stopThr=0,
            numItermax=1,
            warn=True,
            warn_dykstra=False,
        )

    # check warn parameter when Dykstra algorithm doesn't converge
    with pytest.warns(UserWarning):
        ot.gromov.lowrank_gromov_wasserstein_samples(
            X_s,
            X_t,
            a,
            b,
            reg=0.1,
            stopThr_dykstra=0,
            numItermax_dykstra=1,
            warn=False,
            warn_dykstra=True,
        )


@pytest.mark.parametrize(("alpha, rank"), ((0.8, 2), (0.5, 3), (0.2, 6), (0.1, -1)))
def test_lowrank_gromov_wasserstein_samples_alpha_error(alpha, rank):
    # Test warning for value of alpha and rank
    n_samples = 20  # nb samples
    mu_s = np.array([0, 0])
    cov_s = np.array([[1, 0], [0, 1]])

    X_s = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=1)
    X_t = X_s[::-1].copy()

    a = ot.unif(n_samples)
    b = ot.unif(n_samples)

    with pytest.raises(ValueError):
        ot.gromov.lowrank_gromov_wasserstein_samples(
            X_s, X_t, a, b, reg=0.1, rank=rank, alpha=alpha, warn=False
        )


@pytest.mark.parametrize(("gamma_init"), ("rescale", "theory", "other"))
def test_lowrank_wasserstein_samples_gamma_init(gamma_init):
    # Test lr sinkhorn with different init strategies
    n_samples = 20  # nb samples
    mu_s = np.array([0, 0])
    cov_s = np.array([[1, 0], [0, 1]])

    X_s = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=1)
    X_t = X_s[::-1].copy()

    a = ot.unif(n_samples)
    b = ot.unif(n_samples)

    if gamma_init not in ["rescale", "theory"]:
        with pytest.raises(NotImplementedError):
            ot.gromov.lowrank_gromov_wasserstein_samples(
                X_s, X_t, a, b, reg=0.1, gamma_init=gamma_init, log=True
            )

    else:
        Q, R, g, log = ot.gromov.lowrank_gromov_wasserstein_samples(
            X_s, X_t, a, b, reg=0.1, gamma_init=gamma_init, log=True
        )
        P = log["lazy_plan"][:]

        # check constraints for P
        np.testing.assert_allclose(a, P.sum(1), atol=1e-04)
        np.testing.assert_allclose(b, P.sum(0), atol=1e-04)


@pytest.skip_backend("tf")
def test_lowrank_gromov_wasserstein_samples_backends(nx):
    # Test low rank sinkhorn for different backends
    n_samples = 20  # nb samples
    mu_s = np.array([0, 0])
    cov_s = np.array([[1, 0], [0, 1]])

    X_s = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=1)
    X_t = X_s[::-1].copy()

    a = ot.unif(n_samples)
    b = ot.unif(n_samples)

    ab, bb, X_sb, X_tb = nx.from_numpy(a, b, X_s, X_t)

    Q, R, g, log = ot.gromov.lowrank_gromov_wasserstein_samples(
        X_sb, X_tb, ab, bb, reg=0.1, log=True
    )
    lazy_plan = log["lazy_plan"]
    P = lazy_plan[:]

    np.testing.assert_allclose(ab, P.sum(1), atol=1e-04)
    np.testing.assert_allclose(bb, P.sum(0), atol=1e-04)