1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
"""Tests for module 1d Wasserstein solver"""
# Author: Adrien Corenflos <adrien.corenflos@aalto.fi>
# Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License
import numpy as np
import pytest
import ot
from ot.backend import tf
from ot.lp import wasserstein_1d
from scipy.stats import wasserstein_distance
def test_emd_1d_emd2_1d_with_weights():
# test emd1d gives similar results as emd
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.randn(n, 1)
v = rng.randn(m, 1)
w_u = rng.uniform(0.0, 1.0, n)
w_u = w_u / w_u.sum()
w_v = rng.uniform(0.0, 1.0, m)
w_v = w_v / w_v.sum()
M = ot.dist(u, v, metric="sqeuclidean")
G, log = ot.emd(w_u, w_v, M, log=True)
wass = log["cost"]
G_1d, log = ot.emd_1d(u, v, w_u, w_v, metric="sqeuclidean", log=True)
wass1d = log["cost"]
wass1d_emd2 = ot.emd2_1d(u, v, w_u, w_v, metric="sqeuclidean", log=False)
wass1d_euc = ot.emd2_1d(u, v, w_u, w_v, metric="euclidean", log=False)
# check loss is similar
np.testing.assert_allclose(wass, wass1d)
np.testing.assert_allclose(wass, wass1d_emd2)
# check loss is similar to scipy's implementation for Euclidean metric
wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)), w_u, w_v)
np.testing.assert_allclose(wass_sp, wass1d_euc)
# check constraints
np.testing.assert_allclose(w_u, G.sum(1))
np.testing.assert_allclose(w_v, G.sum(0))
# check that an error is raised if the metric is not a Minkowski one
np.testing.assert_raises(ValueError, ot.emd_1d, u, v, w_u, w_v, metric="cosine")
np.testing.assert_raises(ValueError, ot.emd2_1d, u, v, w_u, w_v, metric="cosine")
def test_wasserstein_1d(nx):
rng = np.random.RandomState(0)
n = 100
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
# test 1 : wasserstein_1d should be close to scipy W_1 implementation
np.testing.assert_almost_equal(
wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1),
wasserstein_distance(x, x, rho_u, rho_v),
)
# test 2 : wasserstein_1d should be close to one when only translating the support
np.testing.assert_almost_equal(wasserstein_1d(xb, xb + 1, p=2), 1.0)
# test 3 : arrays test
X = np.stack((np.linspace(0, 5, n), np.linspace(0, 5, n) * 10), -1)
Xb = nx.from_numpy(X)
res = wasserstein_1d(Xb, Xb, rho_ub, rho_vb, p=2)
np.testing.assert_almost_equal(100 * res[0], res[1], decimal=4)
def test_wasserstein_1d_type_devices(nx):
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v, type_as=tp)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_wasserstein_1d_device_tf():
nx = ot.backend.TensorflowBackend()
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
if len(tf.config.list_physical_devices("GPU")) > 0:
# Check that everything happens on the GPU
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
res = wasserstein_1d(xb, xb, rho_ub, rho_vb, p=1)
nx.assert_same_dtype_device(xb, res)
assert nx.dtype_device(res)[1].startswith("GPU")
def test_emd_1d_emd2_1d():
# test emd1d gives similar results as emd
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.randn(n, 1)
v = rng.randn(m, 1)
M = ot.dist(u, v, metric="sqeuclidean")
G, log = ot.emd([], [], M, log=True)
wass = log["cost"]
G_1d, log = ot.emd_1d(u, v, [], [], metric="sqeuclidean", log=True)
wass1d = log["cost"]
wass1d_emd2 = ot.emd2_1d(u, v, [], [], metric="sqeuclidean", log=False)
wass1d_euc = ot.emd2_1d(u, v, [], [], metric="euclidean", log=False)
# check loss is similar
np.testing.assert_allclose(wass, wass1d)
np.testing.assert_allclose(wass, wass1d_emd2)
# check loss is similar to scipy's implementation for Euclidean metric
wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)))
np.testing.assert_allclose(wass_sp, wass1d_euc)
# check constraints
np.testing.assert_allclose(np.ones((n,)) / n, G.sum(1))
np.testing.assert_allclose(np.ones((m,)) / m, G.sum(0))
# check G is similar
np.testing.assert_allclose(G, G_1d, atol=1e-15)
# check AssertionError is raised if called on non 1d arrays
u = rng.randn(n, 2)
v = rng.randn(m, 2)
with pytest.raises(AssertionError):
ot.emd_1d(u, v, [], [])
def test_emd1d_type_devices(nx):
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v, type_as=tp)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
@pytest.mark.skipif(not tf, reason="tf not installed")
def test_emd1d_device_tf():
nx = ot.backend.TensorflowBackend()
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 5, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
# Check that everything stays on the CPU
with tf.device("/CPU:0"):
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
if len(tf.config.list_physical_devices("GPU")) > 0:
# Check that everything happens on the GPU
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v)
emd = ot.emd_1d(xb, xb, rho_ub, rho_vb)
emd2 = ot.emd2_1d(xb, xb, rho_ub, rho_vb)
nx.assert_same_dtype_device(xb, emd)
nx.assert_same_dtype_device(xb, emd2)
assert nx.dtype_device(emd)[1].startswith("GPU")
def test_wasserstein_1d_circle():
# test binary_search_circle and wasserstein_circle give similar results as emd
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.rand(
n,
)
v = rng.rand(
m,
)
w_u = rng.uniform(0.0, 1.0, n)
w_u = w_u / w_u.sum()
w_v = rng.uniform(0.0, 1.0, m)
w_v = w_v / w_v.sum()
M1 = np.minimum(np.abs(u[:, None] - v[None]), 1 - np.abs(u[:, None] - v[None]))
wass1 = ot.emd2(w_u, w_v, M1)
wass1_bsc = ot.binary_search_circle(u, v, w_u, w_v, p=1)
w1_circle = ot.wasserstein_circle(u, v, w_u, w_v, p=1)
M2 = M1**2
wass2 = ot.emd2(w_u, w_v, M2)
wass2_bsc = ot.binary_search_circle(u, v, w_u, w_v, p=2)
w2_circle = ot.wasserstein_circle(u, v, w_u, w_v, p=2)
# check loss is similar
np.testing.assert_allclose(wass1, wass1_bsc)
np.testing.assert_allclose(wass1, w1_circle, rtol=1e-2)
np.testing.assert_allclose(wass2, wass2_bsc)
np.testing.assert_allclose(wass2, w2_circle)
@pytest.skip_backend("tf")
def test_wasserstein1d_circle_devices(nx):
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 1, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
rho_v = np.abs(rng.randn(n))
rho_v /= rho_v.sum()
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb, rho_ub, rho_vb = nx.from_numpy(x, rho_u, rho_v, type_as=tp)
w1 = ot.wasserstein_circle(xb, xb, rho_ub, rho_vb, p=1)
w2_bsc = ot.wasserstein_circle(xb, xb, rho_ub, rho_vb, p=2)
nx.assert_same_dtype_device(xb, w1)
nx.assert_same_dtype_device(xb, w2_bsc)
def test_wasserstein_1d_unif_circle():
# test semidiscrete_wasserstein2_unif_circle versus wasserstein_circle
n = 20
m = 1000
rng = np.random.RandomState(0)
u = rng.rand(
n,
)
v = rng.rand(
m,
)
# w_u = rng.uniform(0., 1., n)
# w_u = w_u / w_u.sum()
w_u = ot.utils.unif(n)
w_v = ot.utils.unif(m)
M1 = np.minimum(np.abs(u[:, None] - v[None]), 1 - np.abs(u[:, None] - v[None]))
wass2 = ot.emd2(w_u, w_v, M1**2)
wass2_circle = ot.wasserstein_circle(u, v, w_u, w_v, p=2, eps=1e-15)
wass2_unif_circle = ot.semidiscrete_wasserstein2_unif_circle(u, w_u)
# check loss is similar
np.testing.assert_allclose(wass2, wass2_unif_circle, atol=1e-2)
np.testing.assert_allclose(wass2_circle, wass2_unif_circle, atol=1e-2)
def test_wasserstein1d_unif_circle_devices(nx):
rng = np.random.RandomState(0)
n = 10
x = np.linspace(0, 1, n)
rho_u = np.abs(rng.randn(n))
rho_u /= rho_u.sum()
for tp in nx.__type_list__:
print(nx.dtype_device(tp))
xb, rho_ub = nx.from_numpy(x, rho_u, type_as=tp)
w2 = ot.semidiscrete_wasserstein2_unif_circle(xb, rho_ub)
nx.assert_same_dtype_device(xb, w2)
def test_binary_search_circle_log():
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.rand(
n,
)
v = rng.rand(
m,
)
wass2_bsc, log = ot.binary_search_circle(u, v, p=2, log=True)
optimal_thetas = log["optimal_theta"]
assert optimal_thetas.shape[0] == 1
def test_wasserstein_circle_bad_shape():
n = 20
m = 30
rng = np.random.RandomState(0)
u = rng.rand(n, 2)
v = rng.rand(m, 1)
with pytest.raises(ValueError):
_ = ot.wasserstein_circle(u, v, p=2)
with pytest.raises(ValueError):
_ = ot.wasserstein_circle(u, v, p=1)
|