1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
"""Tests for module dr on Dimensionality Reduction"""
# Author: Remi Flamary <remi.flamary@unice.fr>
# Minhui Huang <mhhuang@ucdavis.edu>
# Antoine Collas <antoine.collas@inria.fr>
#
# License: MIT License
import numpy as np
import ot
import pytest
try: # test if autograd and pymanopt are installed
import ot.dr
nogo = False
except ImportError:
nogo = True
@pytest.mark.skipif(nogo, reason="Missing modules (autograd or pymanopt)")
def test_fda():
n_samples = 90 # nb samples in source and target datasets
rng = np.random.RandomState(0)
# generate gaussian dataset
xs, ys = ot.datasets.make_data_classif("gaussrot", n_samples, random_state=rng)
n_features_noise = 8
xs = np.hstack((xs, rng.randn(n_samples, n_features_noise)))
p = 1
Pfda, projfda = ot.dr.fda(xs, ys, p)
projfda(xs)
np.testing.assert_allclose(np.sum(Pfda**2, 0), np.ones(p))
@pytest.mark.skipif(nogo, reason="Missing modules (autograd or pymanopt)")
def test_wda():
n_samples = 100 # nb samples in source and target datasets
rng = np.random.RandomState(0)
# generate gaussian dataset
xs, ys = ot.datasets.make_data_classif("gaussrot", n_samples, random_state=rng)
n_features_noise = 8
xs = np.hstack((xs, rng.randn(n_samples, n_features_noise)))
p = 2
Pwda, projwda = ot.dr.wda(xs, ys, p, maxiter=10)
projwda(xs)
np.testing.assert_allclose(np.sum(Pwda**2, 0), np.ones(p))
@pytest.mark.skipif(nogo, reason="Missing modules (autograd or pymanopt)")
def test_wda_low_reg():
n_samples = 100 # nb samples in source and target datasets
rng = np.random.RandomState(0)
# generate gaussian dataset
xs, ys = ot.datasets.make_data_classif("gaussrot", n_samples, random_state=rng)
n_features_noise = 8
xs = np.hstack((xs, rng.randn(n_samples, n_features_noise)))
p = 2
Pwda, projwda = ot.dr.wda(
xs, ys, p, reg=0.01, maxiter=10, sinkhorn_method="sinkhorn_log"
)
projwda(xs)
np.testing.assert_allclose(np.sum(Pwda**2, 0), np.ones(p))
@pytest.mark.skipif(nogo, reason="Missing modules (autograd or pymanopt)")
def test_wda_normalized():
n_samples = 100 # nb samples in source and target datasets
rng = np.random.RandomState(0)
# generate gaussian dataset
xs, ys = ot.datasets.make_data_classif("gaussrot", n_samples, random_state=rng)
n_features_noise = 8
xs = np.hstack((xs, rng.randn(n_samples, n_features_noise)))
p = 2
P0 = rng.randn(10, p)
P0 /= P0.sum(0, keepdims=True)
Pwda, projwda = ot.dr.wda(xs, ys, p, maxiter=10, P0=P0, normalize=True)
projwda(xs)
np.testing.assert_allclose(np.sum(Pwda**2, 0), np.ones(p))
@pytest.mark.skipif(nogo, reason="Missing modules (autograd or pymanopt)")
def test_prw():
d = 100 # Dimension
n = 100 # Number samples
k = 3 # Subspace dimension
dim = 3
def fragmented_hypercube(n, d, dim, rng):
assert dim <= d
assert dim >= 1
assert dim == int(dim)
a = (1.0 / n) * np.ones(n)
b = (1.0 / n) * np.ones(n)
# First measure : uniform on the hypercube
X = rng.uniform(-1, 1, size=(n, d))
# Second measure : fragmentation
tmp_y = rng.uniform(-1, 1, size=(n, d))
Y = tmp_y + 2 * np.sign(tmp_y) * np.array(dim * [1] + (d - dim) * [0])
return a, b, X, Y
rng = np.random.RandomState(42)
a, b, X, Y = fragmented_hypercube(n, d, dim, rng)
tau = 0.002
reg = 0.2
pi, U = ot.dr.projection_robust_wasserstein(
X, Y, a, b, tau, reg=reg, k=k, maxiter=1000, verbose=1
)
U0 = rng.randn(d, k)
U0, _ = np.linalg.qr(U0)
pi, U = ot.dr.projection_robust_wasserstein(
X, Y, a, b, tau, U0=U0, reg=reg, k=k, maxiter=1000, verbose=1
)
@pytest.mark.skipif(nogo, reason="Missing modules (autograd or pymanopt)")
def test_ewca():
d = 5
n_samples = 50
k = 3
rng = np.random.RandomState(0)
# generate gaussian dataset
A = rng.normal(size=(d, d))
Q, _ = np.linalg.qr(A)
D = rng.normal(size=d)
D = (D / np.linalg.norm(D)) ** 4
cov = Q @ np.diag(D) @ Q.T
X = rng.multivariate_normal(np.zeros(d), cov, size=n_samples)
X = X - X.mean(0, keepdims=True)
assert X.shape == (n_samples, d)
# compute first 3 components with BCD
pi, U = ot.dr.ewca(
X, reg=0.01, method="BCD", k=k, verbose=1, sinkhorn_method="sinkhorn_log"
)
assert pi.shape == (n_samples, n_samples)
assert (pi >= 0).all()
assert np.allclose(pi.sum(0), 1 / n_samples, atol=1e-3)
assert np.allclose(pi.sum(1), 1 / n_samples, atol=1e-3)
assert U.shape == (d, k)
assert np.allclose(U.T @ U, np.eye(k), atol=1e-3)
# test that U contains the principal components
U_first_eigvec = np.linalg.svd(X.T, full_matrices=False)[0][:, :k]
_, cos, _ = np.linalg.svd(U.T @ U_first_eigvec, full_matrices=False)
assert np.allclose(cos, np.ones(k), atol=1e-3)
# compute first 3 components with MM
pi, U = ot.dr.ewca(
X, reg=0.01, method="MM", k=k, verbose=1, sinkhorn_method="sinkhorn_log"
)
assert pi.shape == (n_samples, n_samples)
assert (pi >= 0).all()
assert np.allclose(pi.sum(0), 1 / n_samples, atol=1e-3)
assert np.allclose(pi.sum(1), 1 / n_samples, atol=1e-3)
assert U.shape == (d, k)
assert np.allclose(U.T @ U, np.eye(k), atol=1e-3)
# test that U contains the principal components
U_first_eigvec = np.linalg.svd(X.T, full_matrices=False)[0][:, :k]
_, cos, _ = np.linalg.svd(U.T @ U_first_eigvec, full_matrices=False)
assert np.allclose(cos, np.ones(k), atol=1e-3)
# compute last 3 components
pi, U = ot.dr.ewca(
X, reg=100000, method="MM", k=k, verbose=1, sinkhorn_method="sinkhorn_log"
)
# test that U contains the last principal components
U_last_eigvec = np.linalg.svd(X.T, full_matrices=False)[0][:, -k:]
_, cos, _ = np.linalg.svd(U.T @ U_last_eigvec, full_matrices=False)
assert np.allclose(cos, np.ones(k), atol=1e-3)
|