1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
"""Tests for module optim fro OT optimization"""
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
import numpy as np
import ot
def test_conditional_gradient(nx):
n_bins = 100 # nb bins
# bin positions
x = np.arange(n_bins, dtype=np.float64)
# Gaussian distributions
a = ot.datasets.make_1D_gauss(n_bins, m=20, s=5) # m= mean, s= std
b = ot.datasets.make_1D_gauss(n_bins, m=60, s=10)
# loss matrix
M = ot.dist(x.reshape((n_bins, 1)), x.reshape((n_bins, 1)))
M /= M.max()
def f(G):
return 0.5 * np.sum(G**2)
def df(G):
return G
def fb(G):
return 0.5 * nx.sum(G**2)
ab, bb, Mb = nx.from_numpy(a, b, M)
reg = 1e-1
G, log = ot.optim.cg(a, b, M, reg, f, df, verbose=True, log=True)
Gb, log = ot.optim.cg(ab, bb, Mb, reg, fb, df, verbose=True, log=True)
Gb = nx.to_numpy(Gb)
np.testing.assert_allclose(Gb, G)
np.testing.assert_allclose(a, Gb.sum(1))
np.testing.assert_allclose(b, Gb.sum(0))
def test_conditional_gradient_itermax(nx):
n = 100 # nb samples
mu_s = np.array([0, 0])
cov_s = np.array([[1, 0], [0, 1]])
mu_t = np.array([4, 4])
cov_t = np.array([[1, -0.8], [-0.8, 1]])
xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s)
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t)
a, b = np.ones((n,)) / n, np.ones((n,)) / n
# loss matrix
M = ot.dist(xs, xt)
M /= M.max()
def f(G):
return 0.5 * np.sum(G**2)
def df(G):
return G
def fb(G):
return 0.5 * nx.sum(G**2)
ab, bb, Mb = nx.from_numpy(a, b, M)
reg = 1e-1
G, log = ot.optim.cg(
a, b, M, reg, f, df, numItermaxEmd=10000, verbose=True, log=True
)
Gb, log = ot.optim.cg(
ab, bb, Mb, reg, fb, df, numItermaxEmd=10000, verbose=True, log=True
)
Gb = nx.to_numpy(Gb)
np.testing.assert_allclose(Gb, G)
np.testing.assert_allclose(a, Gb.sum(1))
np.testing.assert_allclose(b, Gb.sum(0))
def test_generalized_conditional_gradient(nx):
n_bins = 100 # nb bins
# bin positions
x = np.arange(n_bins, dtype=np.float64)
# Gaussian distributions
a = ot.datasets.make_1D_gauss(n_bins, m=20, s=5) # m= mean, s= std
b = ot.datasets.make_1D_gauss(n_bins, m=60, s=10)
# loss matrix
M = ot.dist(x.reshape((n_bins, 1)), x.reshape((n_bins, 1)))
M /= M.max()
def f(G):
return 0.5 * np.sum(G**2)
def df(G):
return G
def fb(G):
return 0.5 * nx.sum(G**2)
reg1 = 1e-3
reg2 = 1e-1
ab, bb, Mb = nx.from_numpy(a, b, M)
G, log = ot.optim.gcg(a, b, M, reg1, reg2, f, df, verbose=True, log=True)
Gb, log = ot.optim.gcg(ab, bb, Mb, reg1, reg2, fb, df, verbose=True, log=True)
Gb = nx.to_numpy(Gb)
np.testing.assert_allclose(Gb, G, atol=1e-12)
np.testing.assert_allclose(a, Gb.sum(1), atol=1e-05)
np.testing.assert_allclose(b, Gb.sum(0), atol=1e-05)
def test_solve_1d_linesearch_quad_funct():
np.testing.assert_allclose(ot.optim.solve_1d_linesearch_quad(1, -1), 0.5)
np.testing.assert_allclose(ot.optim.solve_1d_linesearch_quad(-1, 5), 0)
np.testing.assert_allclose(ot.optim.solve_1d_linesearch_quad(-1, 0.5), 1)
def test_line_search_armijo(nx):
xk = np.array([[0.25, 0.25], [0.25, 0.25]])
pk = np.array([[-0.25, 0.25], [0.25, -0.25]])
gfk = np.array([[23.04273441, 23.0449082], [23.04273441, 23.0449082]])
old_fval = -123.0
xkb, pkb, gfkb = nx.from_numpy(xk, pk, gfk)
def f(x):
return 1.0
# Should not throw an exception and return 0. for alpha
alpha, a, b = ot.optim.line_search_armijo(f, xkb, pkb, gfkb, old_fval)
alpha_np, anp, bnp = ot.optim.line_search_armijo(f, xk, pk, gfk, old_fval)
assert a == anp
assert b == bnp
assert alpha == 0.0
# check line search armijo
def f(x):
return nx.sum((x - 5.0) ** 2)
def grad(x):
return 2 * (x - 5.0)
xk = nx.from_numpy(np.array([[[-5.0, -5.0]]]))
pk = nx.from_numpy(np.array([[[100.0, 100.0]]]))
gfk = grad(xk)
old_fval = f(xk)
# chech the case where the optimum is on the direction
alpha, _, _ = ot.optim.line_search_armijo(f, xk, pk, gfk, old_fval)
np.testing.assert_allclose(alpha, 0.1)
# check the case where the direction is not far enough
pk = nx.from_numpy(np.array([[[3.0, 3.0]]]))
alpha, _, _ = ot.optim.line_search_armijo(f, xk, pk, gfk, old_fval, alpha0=1.0)
np.testing.assert_allclose(alpha, 1.0)
# check the case where checking the wrong direction
alpha, _, _ = ot.optim.line_search_armijo(f, xk, -pk, gfk, old_fval)
assert alpha <= 0
# check the case where the point is not a vector
xk = nx.from_numpy(np.array(-5.0))
pk = nx.from_numpy(np.array(100.0))
gfk = grad(xk)
old_fval = f(xk)
alpha, _, _ = ot.optim.line_search_armijo(f, xk, pk, gfk, old_fval)
np.testing.assert_allclose(alpha, 0.1)
def test_line_search_armijo_dtype_device(nx):
for tp in nx.__type_list__:
def f(x):
return nx.sum((x - 5.0) ** 2)
def grad(x):
return 2 * (x - 5.0)
xk = np.array([[[-5.0, -5.0]]])
pk = np.array([[[100.0, 100.0]]])
xkb, pkb = nx.from_numpy(xk, pk, type_as=tp)
gfkb = grad(xkb)
old_fval = f(xkb)
# chech the case where the optimum is on the direction
alpha, _, fval = ot.optim.line_search_armijo(f, xkb, pkb, gfkb, old_fval)
alpha = nx.to_numpy(alpha)
np.testing.assert_allclose(alpha, 0.1)
nx.assert_same_dtype_device(old_fval, fval)
# check the case where the direction is not far enough
pk = np.array([[[3.0, 3.0]]])
pkb = nx.from_numpy(pk, type_as=tp)
alpha, _, fval = ot.optim.line_search_armijo(
f, xkb, pkb, gfkb, old_fval, alpha0=1.0
)
alpha = nx.to_numpy(alpha)
np.testing.assert_allclose(alpha, 1.0)
nx.assert_same_dtype_device(old_fval, fval)
# check the case where checking the wrong direction
alpha, _, fval = ot.optim.line_search_armijo(f, xkb, -pkb, gfkb, old_fval)
alpha = nx.to_numpy(alpha)
assert alpha <= 0
nx.assert_same_dtype_device(old_fval, fval)
# check the case where the point is not a vector
xkb = nx.from_numpy(np.array(-5.0), type_as=tp)
pkb = nx.from_numpy(np.array(100), type_as=tp)
gfkb = grad(xkb)
old_fval = f(xkb)
alpha, _, fval = ot.optim.line_search_armijo(f, xkb, pkb, gfkb, old_fval)
alpha = nx.to_numpy(alpha)
np.testing.assert_allclose(alpha, 0.1)
nx.assert_same_dtype_device(old_fval, fval)
|