1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
"""Tests for module plot for visualization"""
# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License
import numpy as np
import pytest
try: # test if matplotlib is installed
import matplotlib
matplotlib.use("Agg")
nogo = False
except ImportError:
nogo = True
@pytest.mark.skipif(nogo, reason="Matplotlib not installed")
def test_plot1D_mat():
import ot
import ot.plot
n_bins = 100 # nb bins
# bin positions
x = np.arange(n_bins, dtype=np.float64)
# Gaussian distributions
a = ot.datasets.make_1D_gauss(n_bins, m=20, s=5) # m= mean, s= std
b = ot.datasets.make_1D_gauss(n_bins, m=60, s=10)
# loss matrix
M = ot.dist(x.reshape((n_bins, 1)), x.reshape((n_bins, 1)))
M /= M.max()
ot.plot.plot1D_mat(a, b, M)
ot.plot.plot1D_mat(a, b, M, plot_style="xy")
with pytest.raises(AssertionError):
ot.plot.plot1D_mat(a, b, M, plot_style="NotAValidStyle")
@pytest.mark.skipif(nogo, reason="Matplotlib not installed")
def test_rescale_for_imshow_plot():
import ot
import ot.plot
n = 7
a_x, b_x = -1, 3
x = np.linspace(a_x, b_x, n)
a_y, b_y = 2, 6
y = np.linspace(a_y, b_y, n)
x_rescaled, y_rescaled = ot.plot.rescale_for_imshow_plot(x, y, n)
assert x_rescaled.shape == (n,)
assert y_rescaled.shape == (n,)
x_rescaled, y_rescaled = ot.plot.rescale_for_imshow_plot(
x, y, n, m=n, a_y=a_y + 1, b_y=b_y - 1
)
assert x_rescaled.shape[0] <= n
assert y_rescaled.shape[0] <= n
with pytest.raises(AssertionError):
ot.plot.rescale_for_imshow_plot(x[3:], y, n)
@pytest.mark.skipif(nogo, reason="Matplotlib not installed")
def test_plot2D_samples_mat():
import ot
import ot.plot
n_bins = 50 # nb samples
mu_s = np.array([0, 0])
cov_s = np.array([[1, 0], [0, 1]])
mu_t = np.array([4, 4])
cov_t = np.array([[1, -0.8], [-0.8, 1]])
rng = np.random.RandomState(42)
xs = ot.datasets.make_2D_samples_gauss(n_bins, mu_s, cov_s, random_state=rng)
xt = ot.datasets.make_2D_samples_gauss(n_bins, mu_t, cov_t, random_state=rng)
G = 1.0 * (rng.rand(n_bins, n_bins) < 0.01)
ot.plot.plot2D_samples_mat(xs, xt, G, thr=1e-5)
ot.plot.plot2D_samples_mat(xs, xt, G, thr=1e-5, alpha=0.5)
|